Skip to main content
Log in

Utilization of digital image correlation in determining of both longitudinal shear moduli of wood at single torsion test

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

A sophisticated approach for the precise determination of both longitudinal shear moduli of wood at single test is introduced. The method is based on the combination of the torsion test inducing pure shear stresses in sample and an optical method providing the full-field strain data of such stress state. The proposed procedure of the longitudinal shear moduli determination consists of two main steps. In the first step, the apparent longitudinal shear modulus following the standardized procedure (EN 408+A1) was determined. Secondly, both longitudinal shear moduli were derived based on the apparent longitudinal shear modulus and the shear strain distribution on the radial and tangential sample surfaces. The wood of European beech (Fagus sylvatica L.) was used as material for the experiments. The exploratory analysis revealed the increasing difference between the longitudinal shear moduli determined in the longitudinal–radial plane and in the longitudinal–tangential plane as the total torsion angle increased as well as with the increase in the average torsion stiffness. Further, the longitudinal shear moduli and the torsional longitudinal shear strength did not correlate well. Therefore, they cannot be used in order to predict each other. Although such findings need more detailed studies, they should be taken into account when designing wood structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18:141–146

    Article  Google Scholar 

  • ASTM D143 (1994) Standard test methods for small clear specimens of timber. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • ASTM D198 (2014) Standard test methods of static tests of lumber in structural sizes. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • ASTM D2555 (2006) Standard practise for establishing clear wood strength values. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Bodig J, Goodman JR (1973) Prediction of elastic parameters for wood. Wood Sci 5:249–264

    Google Scholar 

  • Boresi AP, Schmidt RJ (2003) Advanced mechanics of materials. Wiley, New York

    Google Scholar 

  • Bröker FW, Schwab E (1988) Torsionsprüfung von Holz (Torsional testing of wood). Holz Roh Werkst 46:47–52 (in German)

    Article  Google Scholar 

  • Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18:255–265

    Article  Google Scholar 

  • Burdzik WMG, Nkwera PD (2003) The relationship between torsional rigidity and bending strength characteristics of SA pine. S Afr For J 198:17–21

    Google Scholar 

  • Chen Z, Gabbitas B, Hunt D (2006) Monitoring the fracture of wood in torsion using acoustic emission. J Mater Sci 41:3645–3655

    Article  CAS  Google Scholar 

  • Chui YH (1991) Simultaneous evaluation of bending and shear moduli of wood and the influence of knots on these parameters. Wood Sci Technol 25:125–134

    Article  Google Scholar 

  • Dahl KB, Malo KA (2009a) Linear shear properties of spruce softwood. Wood Sci Technol 43:499–525

    Article  CAS  Google Scholar 

  • Dahl KB, Malo KA (2009b) Nonlinear shear properties of spruce softwood: experimental results. Wood Sci Technol 43:539–558

    Article  CAS  Google Scholar 

  • Davalos JF, Qiao P, Wang J, Salim HA, Schlussel J (2002) Shear moduli of structural composites from torsion tests. J Compos Mater 36:1151–1173

    Article  Google Scholar 

  • Divos F, Tanaka T, Nagao H, Kato H (1998) Determination of shear modulus on construction size timber. Wood Sci Technol 32:393–402

    Article  CAS  Google Scholar 

  • EN 408+A1 (2012) Timber structures—structural timber and glued lamined timber—determination of some physical and mechanical properties. European Committee for Standardization, Brussels

    Google Scholar 

  • Günay E, Orҫan Y (2007) Experimental investigation of the mechanical behavior of solid and tubular wood species under torsional loading. Turk J Eng Environ Sci 31:89–118

    Google Scholar 

  • Gupta R, Siller TS (2005a) A comparison of the shear strength of structural composite lumber using torsion and shear block tests. For Prod J 55:29–34

    Google Scholar 

  • Gupta R, Siller TS (2005b) Shear strength of structural composite lumber using torsion tests. J Test Eval 33:110–117

    Google Scholar 

  • Gupta R, Siller TS (2005c) Stress distribution in structural composite lumber under torsion. For Prod J 55:51–56

    Google Scholar 

  • Gupta R, Heck LR, Miller TH (2002a) Experimental evaluation of the torsion test for determining shear strength of structural lumber. J Test Eval 30:283–290

    Article  Google Scholar 

  • Gupta R, Heck LR, Miller TH (2002b) Finite-element analysis of the stress distribution in a torsion test of full-size structural lumber. J Test Eval 30:291–302

    Article  Google Scholar 

  • Harrison SK (2006) Comparison of shear modulus test methods. Master Thesis, Virginia Polytechnic and State University

  • Hearmon RFS, Barkas WW (1941) The effect of grain direction on the Young’s moduli and rigidity moduli of beech and sitka spruce. Proc Phys Soc 53:674–680

    Article  Google Scholar 

  • Heck LR (1998) Evaluation of the torsion test for determining the shear strength of structural lumber. Master Thesis, Oregon State University

  • Hering S, Keunecke D, Niemz P (2012) Moisture-dependent orthotropic elasticity of beech wood. Wood Sci Technol 46:927–938

    Article  CAS  Google Scholar 

  • Hindman D, Manbeck HB, Janowiak JJ (2005a) Torsional rigidity of rectangular wood composite materials. Wood Fiber Sci 37:283–291

    CAS  Google Scholar 

  • Hindman D, Manbeck HB, Janowiak JJ (2005b) Torsional rigidity of wood composite I-joists. Wood Fiber Sci 37:292–303

    CAS  Google Scholar 

  • Hörig H (1935) Anwendung der Elastizitätstheorie anisotroper Körper auf Messungen an Holz (Application of anisotropic elasticity theory to wooden bodies). Ing Arch 6:8–14 (in German)

    Article  Google Scholar 

  • Hsieh K (2007) Numerical modeling and analysis of composite beam structures subjected to torsional loading. Master Thesis, Virginia State University

  • Huber K (1928) Verdrehungselastizität und -festigkeit von Hölzern (Torsion stiffness and strength of wood). Wolf, Germany (in German)

    Google Scholar 

  • Khokhar AM (2011) The evaluation of shear properties of timber beams using torsion test method. Dissertation, Edinburgh Napier University

  • Koerber H, Xavier JC, Camanho PP (2010) High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech Mater 42:1004–1019

    Article  Google Scholar 

  • Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe (Technology of wood and wood-based products). Springer, Berlin (in German)

    Google Scholar 

  • Kollmann F, Côté WA (1968) Principles of wood science and technology: I Solid wood. Springer, Berlin

    Book  Google Scholar 

  • Kúdela J (1990) Vplyv vlhkosti a teploty na mechanické vlastnosti bukového dreva (Influence of moisture and temperature on the mechanical properties of beech wood). Dissertation, Technical University in Zvolen (in Slovakian)

  • Kúdela J, Čunderlík I (2012) Bukové drevo - štruktúra, vlastnosti, použitie (Structure, properties and utilization of beech wood). Technical University in Zvolen, Zvolen (in Slovakian)

    Google Scholar 

  • Lagaňa R, Rohanová A (2011) Characteristics values of beech timber for potential construction applications. Ann WULS-SGGW 75:26–29

    Google Scholar 

  • Liu JY (1984) New shear strength test for solid wood. Wood Fiber Sci 16:567–574

    Google Scholar 

  • Liu JY, Ross RJ, Rammer DR (1996) Improved Arcan shear test for wood. In: Proceedings of the international wood engineering conference, New Orleans, pp 28–31

  • Majano-Majano A, Fernandez-Cabo JL, Hoheisel S, Klein M (2012) A test method for characterizing clear wood using a single specimen. Exp Mech 52:1079–1096

    Article  Google Scholar 

  • Moses DM, Prion HGL (2002) Anisotropic plasticity and failure prediction in wood composites. Research Report, University of British Columbia

  • Müller U, Sretenovic A, Gindl W, Grabner M, Wimmer R, Teischinger A (2004a) Effects of macro-and micro-structural variability on the shear behavior of softwood. IAWA J 25:231–243

    Article  Google Scholar 

  • Müller U, Sretenovic A, Gindl W, Teischinger A (2004b) Longitudinal shear properties of European larch wood related to cell-wall structure. Wood Fiber Sci 36:143–151

    Google Scholar 

  • Nafa Z, Araar M (2003) Applied data for modeling the behavior in cyclic torsion of beams in glued-laminated wood: influence of amplitude. J Wood Sci 49:36–41

    Article  Google Scholar 

  • Neumann AJ (1998) Ermittlung und Bewertung der elastischen Materialkennwerte von Vollholz in Abhängigkeit der Feuchte und der Anisotropie (Identification and evaluation of the elastic properties of solid wood depending on the moisture and anisotropy). Master Thesis, Technische Universität Dresden (in German)

  • Perelygin LM (1965) Náuka o dreve (Wood science). Alfa, Bratislava (in Slovakian)

    Google Scholar 

  • Pierron F, Vautrin A (1998) Measurement of the in-plane shear strengths of unidirectional composites with the Iosipescu test. Compos Sci Technol 57:1653–1660

    Article  Google Scholar 

  • Požgaj A, Chovanec D, Kurjatko S, Babiak M (1997) Štruktúra a vlastnosti dreva (Wood structure and properties). Príroda, a. s., Bratislava (in Slovakian)

    Google Scholar 

  • Riyanto DS, Gupta R (1998) A comparison of test methods for evaluating shear strength of structural lumber. For Prod J 48:83–90

    Google Scholar 

  • Siller TS (2002) Evaluation of the torsion test for determining the shear strength of structural composite lumber. Master Thesis, Oregon State University

  • Sretenovic A, Müller U, Gindl W, Teischinger A (2004) New shear assay for the simultaneous determination of shear strength and shear modulus in solid wood. Wood Fiber Sci 36:302–310

    CAS  Google Scholar 

  • Stamer J, Sieglerschmidt H (1933) Elastische Formänderung der Hölzer (Elastic deformation of wood). Z Ver Dtsch Ing 77:503–505 (in German)

    Google Scholar 

  • Ugolev BN (2007) Drevesinovedenie i lesnoe tovarovedenie (Wood technology and forestry science). Izdovatestvo Moskovskogo Gostdarstvenogo universiteta lesa, Moskva (in Russian)

    Google Scholar 

  • Ukyo S, Karube M, Harada M, Hayashi T, Murata K (2008) Determination of the shear modulus of wood with standard shear block specimen. J Soc Mater Sci 57:317–321

    Article  Google Scholar 

  • Ukyo S, Ido H, Nagao H, Kato H (2010) Simultaneous determination of shear strength and shear modulus in glued-laminated timber using a full-scale shear block specimen. J Wood Sci 56:262–266

    Article  CAS  Google Scholar 

  • Vafai A, Pincus G (1973) Torsional and bending behavior of wood beams. J Struct Div 99:1205–1221

    Google Scholar 

  • Wagenführ R (2007) Holzatlas (Wood atlas). Fachbuchverlag Leipzig im Hanser-Verlag, München (in German)

    Google Scholar 

  • Xavier JC, Garrido NM, Oliveira M, Morais JL, Camanho PP, Pierron F (2004) A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait. Compos Part A-Appl Sci 35:827–840

    Article  Google Scholar 

  • Xavier JC, Oliveira M, Morais J, Pinto T (2009) Measurement of the shear properties of clear wood by the Arcan test. Holzforschung 63:217–225

    Article  CAS  Google Scholar 

  • Yang Z (2012) Torsional shear strength and size effect in structural composite lumber. Master Thesis, University of Massachusetts Amherst

  • Yoshihara H, Kubojima Y (2002) Measurement of the shear modulus of wood by asymmetric four-point bending tests. J Wood Sci 48:14–19

    Article  Google Scholar 

  • Yoshihara H, Ohta M (2000) Estimation of the shear strength of wood by uniaxial-tension tests of off-axis specimens. J Wood Sci 46:159–163

    Article  Google Scholar 

  • Yoshihara H, Kubojima Y, Nagaoka M, Ohta M (1998) Measurement of the shear modulus of wood by static bending tests. J Wood Sci 44:15–20

    Article  Google Scholar 

  • Yoshihara H, Ohsaki H, Kubojima Y, Ohta M (1999) Applicability of the Iosipescu shear test on the measurement of the shear properties of wood. J Wood Sci 45:24–29

    Article  CAS  Google Scholar 

  • Yoshihara H, Ohsaki H, Kubojima Y, Ohta M (2001) Comparison of shear stress and shear strain relations of wood obtained by Iosipescu and torsion tests. Wood Fiber Sci 33:275–283

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Internal Grant Agency of Faculty of Forestry and Wood Technology at Mendel University in Brno (Grant No. 17/2015) and Ministry of Education, Youth and Sports of the Czech Republic (Grant No. 6215648902) and by the European Social Fund and the state budget of the Czech Republic, project “The Establishment of an International Research Team for the Development of New Wood-based Materials” Reg. No. CZ.1.07/2.3.00/20.0269. This work was also partly supported by the project VEGA 1/0395/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Brabec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brabec, M., Lagaňa, R., Milch, J. et al. Utilization of digital image correlation in determining of both longitudinal shear moduli of wood at single torsion test. Wood Sci Technol 51, 29–45 (2017). https://doi.org/10.1007/s00226-016-0848-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0848-7

Keywords

Navigation