Skip to main content
Log in

Towards an Isomorphism Dichotomy for Hereditary Graph Classes

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In this paper we resolve the complexity of the isomorphism problem on all but finitely many of the graph classes characterized by two forbidden induced subgraphs. To this end we develop new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop a methodology to show isomorphism completeness of the isomorphism problem on graph classes by providing a general framework unifying various reduction techniques. Second, we generalize the concept of the modular decomposition to colored graphs, allowing for non-standard decompositions. We show that, given a suitable decomposition functor, the graph isomorphism problem reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of bounded color valence and hypergraph isomorphism on hypergraphs of bounded color class size as follows. We say a colored graph has generalized color valence at most k if, after removing all vertices in color classes of size at most k, for each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded generalized color valence can be solved in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed parameter tractable. In: FSTTCS, pp. 327–337 (2010)

    Google Scholar 

  2. Babai, L.: Moderately exponential bound for graph isomorphism. In: FCT, pp. 34–50 (1981)

    Google Scholar 

  3. Babai, L.: Automorphism groups, isomorphism, reconstruction. Handbook of Combinatorics, vol 2, pp. 1447–1540. MIT Press (1995)

  4. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In: STOC, pp. 684–697. ACM (2016)

    Google Scholar 

  5. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: STOC, pp. 171–183 (1983)

    Google Scholar 

  6. Bacsó, G., Tuza, Z.: Dominating cliques in \(P_{5},\)-free graphs. Period. Math Hungar. 21(4), 303–308 (1990)

  7. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Combinatorial Theory Ser. B 41(2), 182–208 (1986)

  8. Booth, K.S., Colbourn, C.J., Problems Polynomially Equivalent to Graph Isomorphism. Technical Report CS-77-04, Comp. Sci. Dep., Univ. Waterloo (1979)

  9. Brandstädt, A., Kratsch, D.: On the structure of (P\(_{5}\), gem)-free graphs. Discret. Appl. Math. 145(2), 155–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colbourn, M.J., Colbourn, C.J.: Graph isomorphism and self-complementary graphs. SIGACT News 10(1), 25–29 (1978)

    Article  MATH  Google Scholar 

  11. Curtis, A., Lin, M., McConnell, R., Nussbaum, Y., Soulignac, F., Spinrad, J., Szwarcfiter, J.: Isomorphism of graph classes related to the circular-ones property. Discret. Math. Theor. Comput. Sci. 15(1), 157–182 (2013)

  12. Dabrowski, K., Paulusma, D., Clique-width of graph classes defined by two forbidden induced subgraphs. Comput. J. 59(5), 650–666 (2016)

    Article  Google Scholar 

  13. Dabrowski, K.K., Golovach, P.A., Paulusma, D.: Colouring of graphs with ramsey-type forbidden subgraphs. Theor. Comput. Sci. 522, 34–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuhlbrück, F.: Fixed-Parameter Tractability of the Graph Isomorphism and Canonization Problems. Diploma thesis, Humboldt-Universität zu Berlin (2013)

    Google Scholar 

  15. Goldberg, M.K.: A nonfactorial algorithm for testing isomorphism of two graphs. Discret. Appl. Math. 6(3), 229–236 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golovach, P.A., Paulusma, D.: List coloring in the absence of two subgraphs. Discret. Appl. Math. 166, 123–130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs (2012)

  18. Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. In: FOCS, pp 1010–1029. IEEE Computer Society (2015)

  19. Gurevich, Y.: From Invariants to Canonization. Bulletin of the EATCS, 63 (1997)

  20. Gurevich, Y.: From invariants to canonization. In: Current Trends in Theoretical Computer Science, pp. 327–331. World Scientific (2001)

  21. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  22. Junttila, T.A., Kaski, P.: Conflict propagation and component recursion for canonical labeling. In: TAPAS, pp. 151–162 (2011)

  23. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Birkhäuser Verlag, Basel, Switzerland (1993)

    Book  MATH  Google Scholar 

  24. Kȯbler, J., Verbitsky, O.: From invariants to canonization in parallel. In: CSR, pp. 216–227 (2008)

  25. Král, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: WG, pp. 254–262 (2001)

  26. Kratsch, S., Schweitzer, P.: Graph isomorphism for graph classes characterized by two forbidden induced subgraphs (2012)

  27. Kratsch, S., Schweitzer, P.: Graph isomorphism for graph classes characterized by two forbidden induced subgraphs. Discret. Appl. Math. 216, 240–253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lozin, V.V.: A decidability result for the dominating set problem. Theor. Comput. Sci. 411(44–46), 4023–4027 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, G.L.: Isomorphism testing and canonical forms for k-contractable graphs (a generalization of bounded valence and bounded genus). In: FCT, pp. 310–327 (1983)

  31. Nakano, S.-i., Uehara, R., Uno, T.: A new approach to graph recognition and applications to distance-hereditary graphs. J. Comput. Sci. Technol. 24(3), 517–533 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Otachi, Y., Schweitzer, P.: Isomorphism on subgraph-closed graph classes: A complexity dichotomy and intermediate graph classes. In: ISAAC, pp. 111–118 (2013)

  33. Rao, M.: Decomposition of (gem,co-gem)-free graphs. Unpublished available at http://www.labri.fr/perso/rao/publi/decompgemcogem.ps (2007)

  34. Schweitzer, P.: Problems of Unknown Complexity: Graph isomorphism and Ramsey Theoretic Numbers. PhD thesis. Universität des Saarlandes, Germany (2009)

    Google Scholar 

  35. Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes. In: Mayr, E. W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pp. 689–702. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

  36. Seress, Á.: Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge University Press (2003)

Download references

Acknowledgments

I thank Matasha Mazis for inspiring comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Schweitzer.

Additional information

An extended abstract of this paper was presented at STACS 2015 [35]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweitzer, P. Towards an Isomorphism Dichotomy for Hereditary Graph Classes. Theory Comput Syst 61, 1084–1127 (2017). https://doi.org/10.1007/s00224-017-9775-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9775-8

Keywords

Navigation