Skip to main content

Advertisement

Log in

Identification of a Novel Homozygous Missense Mutation in the CLDN16 Gene to Decipher the Ambiguous Clinical Presentation Associated with Autosomal Dominant Hypocalcaemia and Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis in an Indian Family

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHNNC) is a rare autosomal recessive renal tubulopathy disorder characterized by excessive urinary loss of calcium and magnesium, polyuria, polydipsia, bilateral nephrocalcinosis, progressive chronic kidney disease, and renal failure. Also, sometimes amelogenesis imperfecta and severe ocular abnormalities are involved. The CLDN-16 and CLDN-19 genes encode the tight junction proteins claudin-16 and claudin-19, respectively, in the thick ascending loop of Henle in the kidney, epithelial cells of the retina, dental enamel, etc. Loss of function of the CLDN-16 and/or CLDN-19 genes leads to FHHNC. We present a case of FHHNC type 1, which was first confused with autosomal dominant hypocalcaemia (ADH) due to the presence of a very low serum parathyroid hormone (PTH) concentration and other similar clinical features before the genetic investigations. After the exome sequencing, FHHNC type 1 was confirmed by uncovering a novel homozygous missense mutation in the CLDN-16 gene (Exon 2, c.374 T > C) which causes, altered protein structure with F55S. Associated clinical, biochemical, and imaging findings also corroborate final diagnosis. Our findings expand the spectrum of the CLDN-16 mutation, which will further help in the genetic diagnosis and management of FHNNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The genetic analysis data file is available on request.

References

  1. Pearce SH, Williamson C, Kifor O et al (1996) A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 335(15):1115–1122. https://doi.org/10.1056/NEJM199610103351505

    Article  CAS  PubMed  Google Scholar 

  2. Nesbit MA, Hannan FM, Howles SA et al (2013) Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 368(26):2476–2486. https://doi.org/10.1056/NEJMoa1300253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mittelman SD, Hendy GN, Fefferman RA et al (2006) A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J Clin Endocrinol Metab 91(7):2474–2479. https://doi.org/10.1210/jc.2005-2605

    Article  CAS  PubMed  Google Scholar 

  4. Raue F, Pichl J, Dörr HG et al (2011) Activating mutations in the calcium-sensing receptor: genetic and clinical spectrum in 25 patients with autosomal dominant hypocalcaemia - a German survey. Clin Endocrinol (Oxf) 75(6):760–765. https://doi.org/10.1111/j.1365-2265.2011.04142.x

    Article  CAS  PubMed  Google Scholar 

  5. Sastre A, Valentino K, Hannan FM et al (2021) PTH infusion for seizures in autosomal dominant hypocalcemia type 1. N Engl J Med 385(2):189–191. https://doi.org/10.1056/NEJMc2034981

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gomes V, Silvestre C, Ferreira F, Bugalho MJGM (2020). BMJ Case Rep. https://doi.org/10.1136/bcr-2020-234391

    Article  PubMed  PubMed Central  Google Scholar 

  7. Elston MS, Elajnaf T, Hannan FM, Thakker RV (2022) Autosomal Dominant Hypocalcemia Type 1 (ADH1) associated with myoclonus and intracerebral calcifications. J Endocr Soc. https://doi.org/10.1210/jendso/bvac042

    Article  PubMed  PubMed Central  Google Scholar 

  8. Praga M, Vara J, González-Parra E et al (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47(5):1419–1425. https://doi.org/10.1038/ki.1995.199

    Article  CAS  PubMed  Google Scholar 

  9. Claverie-Martin F (2015) Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics. Clin Kidney J 8(6):656–664. https://doi.org/10.1093/ckj/sfv081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Godron A, Harambat J, Boccio V et al (2012) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol 7(5):801–809. https://doi.org/10.2215/CJN.12841211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weber S, Schneider L, Peters M et al (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12(9):1872–1881. https://doi.org/10.1681/ASN.V1291872

    Article  CAS  PubMed  Google Scholar 

  12. Konrad M, Schaller A, Seelow D et al (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79(5):949–957. https://doi.org/10.1086/508617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Claverie-Martín F, García-Nieto V, Loris C et al (2013) Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS ONE 8(1):e53151. https://doi.org/10.1371/journal.pone.0053151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vall-Palomar M, Madariaga L, Ariceta G (2021) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Pediatr Nephrol 36(10):3045–3055. https://doi.org/10.1007/s00467-021-04968-2

    Article  PubMed  Google Scholar 

  15. Prabahar MR, Manorajan R, Fernando ME, Venkatraman R, Balaraman V, Jayakumar M (2006) Nephrocalcinosis in siblings–familial hypomagnesemia, hypercalciuria with nephrocalcinosis (FHHNC syndrome). J Assoc Physicians India 54:497–500

    PubMed  Google Scholar 

  16. Geethalakshmi S, Bhavani N, Vinayan KP, Nair V (2021) Rare Inherited hypomagnesemias—an endocrine case series. Indian Pediatr 58(5):489–490

    Article  CAS  PubMed  Google Scholar 

  17. Chang X, Wang K (2012) wANNOVAR: annotating genetic variants for personal genomes via the web. J Med Genet 49(7):433–436. https://doi.org/10.1136/jmedgenet-2012-100918

    Article  PubMed  Google Scholar 

  18. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684. https://doi.org/10.1093/bioinformatics/11.6.681

    Article  CAS  PubMed  Google Scholar 

  19. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  20. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. https://doi.org/10.1093/nar/gki375

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  22. TOPO2 (http://www.sacs.ucsf.edu/TOPO2/).

  23. Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y (2021) Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep Methods 1(3):100014. https://doi.org/10.1016/j.crmeth.2021.100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simon DB, Lu Y, Choate KA et al (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285(5424):103–106. https://doi.org/10.1126/science.285.5424.103

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguti PM, Neves FA, Hotton D et al (2017) Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet 54(11):786

    Article  Google Scholar 

  28. Bardet C, Courson F, Wu Y et al (2016) Claudin-16 deficiency impairs tight junction function in ameloblasts, leading to abnormal enamel formation. J Bone Miner Res 31(3):498–513. https://doi.org/10.1002/jbmr.2726

    Article  CAS  PubMed  Google Scholar 

  29. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  PubMed  Google Scholar 

  30. de Baaij JH, Dorresteijn EM, Hennekam EA et al (2015) Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrol Dial Transplant 30(6):952–957. https://doi.org/10.1093/ndt/gfv014

    Article  CAS  PubMed  Google Scholar 

  31. Hou J, Rajagopal M, Yu AS (2013) Claudins and the kidney. Annu Rev Physiol 75:479–501. https://doi.org/10.1146/annurev-physiol-030212-183705

    Article  CAS  PubMed  Google Scholar 

  32. Hou J, Renigunta A, Konrad M et al (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118(2):619–628. https://doi.org/10.1172/JCI33970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dimke H, Schnermann J (2018) Axial and cellular heterogeneity in electrolyte transport pathways along the thick ascending limb. Acta Physiol (Oxf) 223(1):e13057. https://doi.org/10.1111/apha.13057

    Article  CAS  PubMed  Google Scholar 

  34. Muto S (2017) Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol 312(1):F9–F24. https://doi.org/10.1152/ajprenal.00204.2016

    Article  CAS  PubMed  Google Scholar 

  35. Tsukita S, Tanaka H, Tamura A (2019) The claudins: from tight junctions to biological systems. Trends Biochem Sci 44(2):141–152. https://doi.org/10.1016/j.tibs.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  36. Mineta K, Yamamoto Y, Yamazaki Y et al (2011) Predicted expansion of the claudin multigene family. FEBS Lett 585(4):606–612. https://doi.org/10.1016/j.febslet.2011.01.028

    Article  CAS  PubMed  Google Scholar 

  37. Meoli L, Günzel D (2020) Channel functions of claudins in the organization of biological systems. Biochim Biophys Acta Biomembr 1862(9):183344. https://doi.org/10.1016/j.bbamem.2020.183344

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki H, Nishizawa T, Tani K et al (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344(6181):304–307. https://doi.org/10.1126/science.1248571

    Article  CAS  PubMed  Google Scholar 

  39. Hou J, Paul DL, Goodenough DA (2005) Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118(Pt 21):5109–5118. https://doi.org/10.1242/jcs.02631

    Article  CAS  PubMed  Google Scholar 

  40. García-Castaño A, Perdomo-Ramirez A, Vall-Palomar M et al (2020) Novel compound heterozygous mutations of CLDN16 in a patient with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Mol Genet Genomic Med 8(11):e1475. https://doi.org/10.1002/mgg3.1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Konrad M, Hou J, Weber S et al (2008) CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 19(1):171–181. https://doi.org/10.1681/ASN.2007060709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Müller D, Kausalya PJ, Claverie-Martin F et al (2003) A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet 73(6):1293–1301. https://doi.org/10.1086/380418

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kausalya PJ, Amasheh S, Günzel D et al (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 116(4):878–891. https://doi.org/10.1172/JCI26323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the necessary support of the Director, NIBMG, authorities of Burdwan Medical College and Hospital, Burdwan, and authorities of Burdwan University, and are thankful to the parents of the patient for agreeing to the present study. RT expresses thanks and acknowledgment to UGC for the NET fellowship.

Funding

The present study was partially supported by the UGC NET fellowship (RT) and intramural grant support of AB from NIBMG.

Author information

Authors and Affiliations

Authors

Contributions

RT did the genetic work and wrote the manuscript; AR did the clinical workup; and KN supervised the clinical workup. AB supervises the genetic work and checks the final manuscript.

Corresponding authors

Correspondence to Kaustav Nayek or Anupam Basu.

Ethics declarations

Conflict of interest

Rupesh Thapa, Amaresh Roy, Kaustav Nayek and Anupam Basu deny any kind of conflict of interest in the present study.

Human and Animal Rights and Informed Consent

Blood samples was sent to the laboratory for the genetic study as per approval of ethics committee and informed consent was taken from the parents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, R., Roy, A., Nayek, K. et al. Identification of a Novel Homozygous Missense Mutation in the CLDN16 Gene to Decipher the Ambiguous Clinical Presentation Associated with Autosomal Dominant Hypocalcaemia and Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis in an Indian Family. Calcif Tissue Int 114, 110–118 (2024). https://doi.org/10.1007/s00223-023-01142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01142-8

Keywords

Navigation