Skip to main content

Advertisement

Log in

The Effects of Exercise on Bone Mineral Density in Men: A Systematic Review and Meta-Analysis of Randomised Controlled Trials

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The aim of this systematic review and meta-analysis was to provide an updated analysis, including the use of more robust methods, on the effects of exercise on bone mineral density in men. Randomised Control Trials of > 24 weeks and published in English up to 01/05/20 were retrieved from 3 electronic databases, cross-referencing, and expert review. The primary outcome measures were changes in FN, LS, and lower limb BMD Standardised effect sizes were calculated from each study and pooled using the inverse heterogeneity model. A statistically significant benefit of exercise was observed on FN BMD [g = 0.21 (0.03, 0.40), Z = 2.23 p = 0.03], with no observed statistically significant benefit of exercise on LS BMD [g = 0.10 (− 0.07, 0.26), Z = 1.15 p = 0.25]. This analysis provided additional evidence to recommend ground- and/or joint-reaction force exercises for improving or maintaining FN, but not LS BMD. Additional well-designed RCTs are unlikely to alter this evidence, although interventions that include activities that directly load the lumbar spine are needed to ensure this is not a potential method of improving LS BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

An Open Science Framework project entitled the effects of exercise on bone mineral density in men: a systematic review and meta-analysis of randomised controlled trials with all materials can be found here https://doi.org/10.17605/OSF.IO/E6W3V [42]

Abbreviations

BMD :

Bone mineral density

DPA:

Dual-energy photon absorptiometry

DXA:

Dual-energy X-ray absorptiometry

ES:

Effect size

FN:

Femoral neck

g:

Hedges standardised mean difference effect size

GRADE:

Grading of Recommendations assessment, development and evaluation

IVhet:

Inverse heterogeneity

LFK:

Luis furuya-kanamori

LS:

Lumbar spine

NNS:

Number-needed-to-screen

PRISMA:

Preferred reporting items for systematic reviews and meta-analyses

pQCT:

Peripheral quantified computer tomography

RCT:

Randomised controlled trial

SD:

Standard deviation

References

  1. Unluhizarci K (2019) Osteoporosis: unawareness or Ignorance? Erciyes Med J 41(1):1–3

    Google Scholar 

  2. Sözen T, Özışık L, Başaran NÇ (2017) An overview and management of osteoporosis. Eur J Rheumatolo 4(1):46

    Google Scholar 

  3. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353(9156):878–882

    CAS  PubMed  Google Scholar 

  4. Feldstein A, Elmer PJ, Orwoll E, Herson M, Hillier T (2003) Bone mineral density measurement and treatment for osteoporosis in older individuals with fractures: a gap in evidence-based practice guideline implementation. Arch Intern Med 163(18):2165–2172

    PubMed  Google Scholar 

  5. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2):4–9

    Google Scholar 

  6. Forsen L, Søgaard A, Meyer H, Edna TH, Kopjar B (1999) Survival after hip fracture: short-and long-term excess mortality according to age and gender. Osteoporos Int 10(1):73–78

    CAS  PubMed  Google Scholar 

  7. Haentjens P, Magaziner J, Colón-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390

    PubMed  PubMed Central  Google Scholar 

  8. Holt G, Smith R, Duncan K, Hutchison J, Gregori A (2008) Gender differences in epidemiology and outcome after hip fracture: evidence from the Scottish hip fracture audit. J Bone Jt Surg Br Vol 90(4):480–483

    CAS  Google Scholar 

  9. Sterling RS (2011) Gender and race/ethnicity differences in hip fracture incidence, morbidity, mortality, and function. Clin Orthop Rel Res 469(7):1913–1918

    Google Scholar 

  10. Kelley GA, Kelley KS, Kohrt WM (2013) Exercise and bone mineral density in men: a meta-analysis of randomized controlled trials. Bone 53(1):103–111

    CAS  PubMed  Google Scholar 

  11. Khan K, McKay H, Kannus P, Wark J, Bailey D, Bennell K (2001) Physical activity and bone health: human kinetics, pp 275, HB

  12. Barry DW, Kohrt WM (2008) BMD decreases over the course of a year in competitive male cyclists. J Bone Miner Res 23(4):484–491

    CAS  PubMed  Google Scholar 

  13. Fredericson M, Ngo J, Cobb K (2005) Effects of ball sports on future risk of stress fracture in runners. Clin J Sport Med 15(3):136–141

    PubMed  Google Scholar 

  14. Fredericson M, Chew K, Ngo J, Cleek T, Kiratli J, Cobb K (2007) Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med 41(10):664–668

    PubMed  PubMed Central  Google Scholar 

  15. Nagle KB, Brooks MA (2011) A systematic review of bone health in cyclists. Sports health 3(3):235–243

    PubMed  PubMed Central  Google Scholar 

  16. Kujala UM, Kaprio J, Kannus P, Sarna S, Koskenvuo M (2000) Physical activity and osteoporotic hip fracture risk in men. Arch Intern Med 160(5):705–708

    CAS  PubMed  Google Scholar 

  17. Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML (2016) Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr 42(1):1–20

    Google Scholar 

  18. Colt E, Akram M, Sunyer FP (2017) Comparison of high-resolution peripheral quantitative computerized tomography with dual-energy X-ray absorptiometry for measuring bone mineral density. Eur J Clin Nutr 71(6):778–781

    CAS  PubMed  Google Scholar 

  19. Bolam KA, Skinner TL, Jenkins DG, Galvao DA, Taaffe DR (2015) The osteogenic effect of impact-loading and resistance exercise on bone mineral density in middle-aged and older men: a pilot study. Gerontology 62(1):22–32

    PubMed  Google Scholar 

  20. Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K (2013) High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone 53(2):321–328

    PubMed  Google Scholar 

  21. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM (2015) Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials 45:130–138

    PubMed  Google Scholar 

  22. Furuya-Kanamori L, Thalib L, Barendregt JJ (2017) Meta-analysis in evidence-based healthcare: a paradigm shift away from random effects is overdue. Int J Evid Based Healthc 15(4):152–160

    PubMed  Google Scholar 

  23. VanderWeele TJ, Ding P (2017) Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 167(4):268–274

    PubMed  Google Scholar 

  24. Furuya-Kanamori L, Barendregt JJ, Doi SA (2018) A new improved graphical and quantitative method for detecting bias in meta-analysis. Int J Evid Based Healthc 16(4):195–203

    PubMed  Google Scholar 

  25. Garner P, Hopewell S, Chandler J, MacLehose H, Akl EA, Beyene J et al (2016) When and how to update systematic reviews: consensus and checklist. BMJ 354:i3507

    PubMed  PubMed Central  Google Scholar 

  26. Sacks H, Chalmers TC, Smith H (1982) Randomized versus historical controls for clinical trials. Am J Med 72(2):233–240

    CAS  PubMed  Google Scholar 

  27. Schulz KF, Chalmers I, Hayes RJ, Altman DG (1995) Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 273(5):408–412

    CAS  PubMed  Google Scholar 

  28. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS med 6(7):e1000097

    PubMed  PubMed Central  Google Scholar 

  29. Hamilton BR, Staines KA, Kelley GA, Kelley KS, Kohrt WM, Pitsiladis Y et al (2020) The effects of exercise on Bone Mineral Density in Men: a protocol for a systematic review and meta-analysis of randomised controlled trials. SportRxiv. https://doi.org/10.31236/osf.io/y8nue

    Article  Google Scholar 

  30. Hamilton BR, Staines K, Kelley GA, Kelley KS, Kohrt WM, Pitsiladis YP et al (2020) The effects of exercise on bone mineral density in men: a systematic review and meta-analysis of randomised controlled trials. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020180441. Accessed 31 May 2020

  31. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    PubMed  PubMed Central  Google Scholar 

  32. Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70:213–220

    CAS  PubMed  Google Scholar 

  33. Lee E, Dobbins M, DeCorby K, McRae L, Tirilis D, Husson H (2012) An optimal search filter for retrieving systematic reviews and meta-analyses. BMC Med Res Methodol 12(1):51

    PubMed  PubMed Central  Google Scholar 

  34. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83(8):713–721

    PubMed  Google Scholar 

  36. Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V et al (2015) Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc 13(1):9–18

    PubMed  Google Scholar 

  37. Ahn S, Becker BJ (2011) Incorporating quality scores in meta-analysis. J Educ Behav Stat 36(5):555–585

    Google Scholar 

  38. Hedges LV, Olkin I (2014) Statistical methods for meta-analysis. Academic Press, pp 191, HB

  39. Follmann D, Elliott P, Suh I, Cutler J (1992) Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 45(7):769–773

    CAS  PubMed  Google Scholar 

  40. Furuya-Kanamori L, Xu C, Lin L, Doan T, Chu H, Thalib L et al (2020) P value–driven methods were underpowered to detect publication bias: analysis of Cochrane review meta-analyses. J Clin Epidemiol 118:86–92

    PubMed  Google Scholar 

  41. Schünemann H, Brożek J, Guyatt G, Oxman A. 2013 GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from guidelinedevelopment org/handbook

  42. Hamilton BR, Staines K, Kelley GA, Kelley KS, Kohrt WM, Pitsiladis YP et al (2021) The effects of exercise on bone mineral density in men: a systematic review and meta-analysis of randomised controlled trials. [Cited 6 Mar 2021]; Available from: https://osf.io/e6w3v/. Accessed 6 Mar 2021

  43. Hong WL (2004) Tai Chi and resistance training exercise: would these really improve the health of the elderly?: The Chinese University of Hong Kong (Hong Kong). ProQuest Dissertations Publishing. 3150510

  44. Kukuljan S, Nowson CA, Sanders KM, Nicholson GC, Seibel MJ, Salmon J et al (2011) Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: an 18-month factorial design randomized controlled trial. J Clin Endocrinol Metab 96(4):955–963

    CAS  PubMed  Google Scholar 

  45. Helge EW, Andersen TR, Schmidt JF, Jorgensen NR, Hornstrup T, Krustrup P et al (2014) Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand J Med Sci Sports 24(Suppl 1):98–104

    PubMed  Google Scholar 

  46. Harding AT, Weeks BK, Lambert C, Watson SL, Weis LJ, Beck BR (2020) Effects of supervised high-intensity resistance and impact training or machine-based isometric training on regional bone geometry and strength in middle-aged and older men with low bone mass: The LIFTMOR-M semi-randomised controlled trial. Bone 136:115362

    PubMed  Google Scholar 

  47. Newton RU, Galvao DA, Spry N, Joseph D, Chambers SK, Gardiner RA et al (2019) Exercise mode specificity for preserving spine and hip bone mineral density in prostate cancer patients. Med Sci Sports Exerc 51(4):607–614

    CAS  PubMed  Google Scholar 

  48. Zeilman CJ III (2007) Inflammatory bowel disease, osteoporosis, exercise, and bone mineral density. University of Florida, Gainesville, p 56

    Google Scholar 

  49. Uth J, Hornstrup T, Christensen JF, Christensen KB, Jorgensen NR, Schmidt JF et al (2016) Efficacy of recreational football on bone health, body composition, and physical functioning in men with prostate cancer undergoing androgen deprivation therapy: 32-week follow-up of the FC prostate randomised controlled trial. Osteoporos Int 27(4):1507–1518

    CAS  PubMed  Google Scholar 

  50. Bjerre ED, Jørgensen AB, Petersen TH, Eriksen AR, Midtgaard J, Krustrup P et al (2019) Football compared with usual care in men with prostate cancer (FC prostate community trial): a pragmatic multicentre randomized controlled trial. Sports Med 49(1):145–158

    PubMed  Google Scholar 

  51. Kemmler W, Kohl M, Frohlich M, Jakob F, Engelke K, von Stengel S et al (2020) Effects of high-intensity resistance training on osteopenia and sarcopenia parameters in older men with osteosarcopenia-one-year results of the randomized controlled Franconian osteopenia and sarcopenia trial (FrOST). J Bone Miner Res 35(9):1634–1644

    CAS  PubMed  Google Scholar 

  52. Kim SH, Seong DH, Yoon SM, Choi YD, Choi E, Song Y et al (2018) The effect on bone outcomes of home-based exercise intervention for prostate cancer survivors receiving androgen deprivation therapy: a pilot randomized controlled trial. Cancer Nurs 41(5):379–388

    PubMed  Google Scholar 

  53. Ashe MC, Santos IKd, Edward NY, Burnett LA, Barnes R, Fleig L et al (2021) Physical activity and bone health in men: a systematic review and meta-analysis. J Bone Metab 28(1):27–39

    PubMed  PubMed Central  Google Scholar 

  54. Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M et al (2012) The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev 1(1):1–9

    Google Scholar 

  55. Rücker G, Schumacher M (2008) Simpson’s paradox visualized: the example of the rosiglitazone meta-analysis. BMC Med Res Methodol 8(1):1–8

    Google Scholar 

  56. Bloomfield SA, Little K, Nelson M, Yingling V (2004) American college of sports medicine position stand: physical activity and bone health. Med Sci Sports Exerc 195(9131/04):3611

    Google Scholar 

  57. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES et al (2012) Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97(6):1802–1822

    CAS  PubMed  Google Scholar 

  58. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G et al (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 54(24):1451–1462

    PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FMG and KS; methodology, BRH, FMG and GK; writing–original draft preparation, BRH and FMG; writing–review and editing, ALL.

Corresponding author

Correspondence to Fergus M. Guppy.

Ethics declarations

Conflict of interest

There are no competing interests for any author.

Ethical Approval

No ethical approval was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, B.R., Staines, K.A., Kelley, G.A. et al. The Effects of Exercise on Bone Mineral Density in Men: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Calcif Tissue Int 110, 41–56 (2022). https://doi.org/10.1007/s00223-021-00893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00893-6

Navigation