Skip to main content

Advertisement

Log in

Persistent Abnormal Immunocytes Induced Systemic Bone Loss in Locally Irradiated Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Chronic and systemic bone complications frequently occur in patients who undergo radiotherapy; however, the pathological mechanisms underlying these complications remain unclear. This study aimed to observe persistent and systemic changes in locally irradiated rats and to determine the systemic pathological changes that persistently affect bone metabolism. We examined the inflammatory and oxidative stress responses that occurred after local irradiation using enzyme immunoassays and biochemical analyses. Lymphocytes obtained from the blood, spleen, thymus, and bone marrow were evaluated using flow cytometry. The proliferation and apoptosis characteristics of co-cultured bone marrow-derived mesenchymal stem cells (BMSCs) were detected by MTT assay and PI/Annexin V-FITC staining, respectively, and the differentiation of BMSCs was measured according to alkaline phosphatase (ALP) staining, alizarin red staining, and Oil Red O staining and by evaluating the mRNA expression of ALP, osteocalcin (OCN), osteopontin (OPN), collagen I, Runx2, and PPARγ. Our results revealed that no significant or continuous differences were present in the inflammatory response or the oxidative stress response throughout the body after local irradiation. B lymphocyte levels increased continuously in the blood, spleen, and bone marrow after local irradiation. T lymphocyte levels were decreased at 2 weeks after local irradiation, and CD8+T lymphocyte levels were increased in the blood, thymus, and bone marrow at 12 weeks after local irradiation. The ratio of CD4+/CD8+T lymphocytes began to decrease during the early phase after local irradiation and became significantly decreased at 12 weeks after local irradiation. Normal BMSCs co-cultured with lymphocytes derived from irradiated rats exhibited decreased proliferation and increased apoptosis, and the ALP staining intensity, alizarin red staining intensity, and mRNA expression of related genes were all also decreased. Oil Red O staining intensity and mRNA expression of PPARγ were both increased. Lymphocyte levels contribute to chronic and systemic bone complications after radiotherapy by inhibiting the proliferation and osteoblastogenesis of BMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TNF-α:

Tumor necrosis factor-α

IL-6:

Interleukin-6

IFN-γ:

Interferon-γ

IL-1α:

Interleukin-1α

IL-1β:

Interleukin-1β

MCP-1:

Monocyte chemoattractant protein 1

MIP:

Macrophage inflammatory protein

SOD:

Superoxide dismutase

CAT:

Catalase

MDA:

Malondialdehyde

GSH-Px:

Glutathione peroxidase

T-AOC:

Total antioxidant capacity

BMSCs:

Bone marrow-derived mesenchymal stem cells

RANKL:

Receptor activator of nuclear factor kappa B ligand

BV/TV:

Ratio of the segmented bone volume to the total volume

References

  1. Baldini EH, Le Cesne A, Trent JC (2018) Neoadjuvant chemotherapy, concurrent chemoradiation, and adjuvant chemotherapy for high-risk extremity soft tissue sarcoma. Am Soc Clin Oncol Educ Book 23(38):910–915. https://doi.org/10.1200/EDBK_201421

    Article  Google Scholar 

  2. Heinrich S, Lang H (2017) Neoadjuvant therapy of pancreatic cancer: definitions and benefits. Int J Mol Sci. https://doi.org/10.3390/ijms18081622

    Article  PubMed  PubMed Central  Google Scholar 

  3. D’Oronzo S, Stucci S, Tucci M, Silvestris F (2015) Cancer treatment-induced bone loss (CTIBL): pathogenesis and clinical implications. Cancer Treat Rev 41(9):798–808. https://doi.org/10.1016/j.ctrv.2015.09.003

    Article  PubMed  Google Scholar 

  4. Soares CBG, Araújo ID, Pádua BJ, Vilela JCS, Souza RHR, Teixeira LEM (2019) Pathological fracture after radiotherapy: systematic review of literature. Rev Assoc Med Bras 65(6):902–908. https://doi.org/10.1590/1806-9282.65.6.902

    Article  PubMed  Google Scholar 

  5. Kang YM, Chao TF, Wang TH, Hu YW (2019) Increased risk of pelvic fracture after radiotherapy in rectal cancer survivors: a propensity matched study. Cancer Med 8(8):3639–3647. https://doi.org/10.1002/cam4.2030

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen Z, Maricic M, Aragaki AK, Mouton C, Arendell L, Lopez AM, Bassford T, Chlebowski RT (2009) Fracture risk increases after diagnosis of breast or other cancers in postemenopausal women: results from the Women’s Health Initiative. Osteoporos Int 20(4):527–536. https://doi.org/10.1007/s00198-008-0721-0

    Article  CAS  PubMed  Google Scholar 

  7. Pillai US, Kayal S, Cyriac S, Nisha Y, Dharanipragada K, Kamalanathan SK, Halanaik D, Kumar N, Madasamy P, Muniswamy DK, Dubashi B (2019) Late effects of breast cancer treatment and outcome after corrective interventions. Asian Pac J Cancer Prev 20(9):2673–2679. https://doi.org/10.31557/apjcp.2019.20.9.2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramchand SK, Cheung YM, Grossmann M (2019) Bone health in women with breast cancer. Climacteric 22(6):589–595. https://doi.org/10.1080/13697137.2019.1580257

    Article  CAS  PubMed  Google Scholar 

  9. Jia D, Gaddy D, Suva LJ, Corry PM (2011) Rapid loss of bone mass and strength in mice after abdominal irradiation. Radiat Res 176(5):624–635. https://doi.org/10.1667/rr2505.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wright LE, BuijsJT Kim HS, Coats LE, Scheidler AM, John SK, She Y, Murthy S, Ma N, Chin-Sinex HJ, Bellido TM, Bateman TA, Mendonca MS, Mohammad KS, Guise TA (2015) Single-limb irradiation induces local and systemic bone loss in a murine model. J Bone Miner Res 30(7):1268–1279. https://doi.org/10.1002/jbmr.2458

    Article  CAS  PubMed  Google Scholar 

  11. Pan M, Hong W, Yao Y, Gao X, Zhou Y, Fu G, Li Y, Guo Q, Rao X, Tang P, Chen S, Jin W, Hua G, Gao J, Xu X (2019) Activated B lymphocyte inhibited the osteoblastogenesis of bone mesenchymal stem cells by notch signaling. Stem Cells Int. https://doi.org/10.1155/2019/8150123

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu X, Li R, Zhou Y, Zou Z, Ding Q, Wang J, Jin W, Hua G, Gao J (2017) Dysregulated systemic lymphocytes affect the balance of osteogenic/daipogenic differentiation of bone mesenchymal stem cells after local irradiation. Stem Cell Res Ther 8(1):71. https://doi.org/10.1186/s13287-017-0527-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wissing MD (2015) Chemotherapy- and irradiation-induced bone loss in adults with solid tumors. Curr Osteoporos Rep 13(3):140–145. https://doi.org/10.1007/s11914-015-0266-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hayar M, Durankuş NK, Altun GD, Koçak Z, Uzal MC, Saynak M (2019) Investigation of differences of sacral and vertebral bone mineral densities before and after radiotherapy in patients with locally advanced rectal cancer. Cancer Radiother 23(5):408–415. https://doi.org/10.1016/j.canrad.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  15. Bedatsova L, Drake MT (2019) The skeletal impact of cancer therapies. Br J Clin Pharmacol 85(6):1161–1168. https://doi.org/10.1111/bcp.13866

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tőkés T, Varga G, Garab D, Nagy Z, Fekete G, Tuboly E, Plangár I, Mán I, Szabó RE, Szabó Z, Volford G, Ghyczy M, Kaszaki J, Boros M, Hideghéty K (2014) Peripheral inflammatory activation after hippocampus irradiation in the rat. Int Radiat Biol 90(1):1–6. https://doi.org/10.3109/09553002.2013.836617

    Article  CAS  Google Scholar 

  17. Cohen SR, Cohen EP (2013) Chronic oxidative stress after irradiation: an unproven hypothesis. Med Hypotheses 80(2):172–175. https://doi.org/10.1016/j.mehy.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  18. Zou Q, Hong W, Zhou Y, Ding Q, Wang J, Jin W, Gao J, Hua G, Xu X (2016) Bone marrow stem cell dysfunction in radiation-induced abscopal bone loss. J Orthop Surg Res. https://doi.org/10.1186/s13018-015-0339-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Walsh MC, Takegahara N, Kim H, Choi Y (2018) Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol 14(3):146–156. https://doi.org/10.1038/nrrheum.2017.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terashima A, Takayanagi H (2018) Overview of osteoimmunology. Calcif Tissue Int 102(5):503–511. https://doi.org/10.1007/s00223-018-0417-1

    Article  CAS  PubMed  Google Scholar 

  21. Azam Z, Anupam R, Mondal RK, Srivastava RK (2018) Osteoimmunology: the nexus between bone and immune system. Front Biosci (Landmark Ed) 23:464–492. https://doi.org/10.2741/4600

    Article  Google Scholar 

  22. Srivastava RK, Dar HY, Mishra PK (2018) Immunoporosis: immunology of osteoporosis-role of T cells. Front Immunol 9:657. https://doi.org/10.3389/fimmu.2018.00657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu S, Zhang Y, Liu B, Li K, Huang B, Yan B, Zhang Z, Liang K, Jia C, Lin J, Zeng C, Cai D, Jin D, Jiang Y, Bai X (2016) Activation of mTORC1 in B lymphocytes promotes osteoclast formation via regulation of beta-catenin and RANKL/OPG. J Bone Miner Res 31(7):1320–1333. https://doi.org/10.1002/jbmr.2800

    Article  CAS  PubMed  Google Scholar 

  24. Weitzmann MN (2014) T-cells and B-cells in osteoporosis. Curr Opin Endocrinol Diabetes Obes 21(6):461–467. https://doi.org/10.1097/med.0000000000000103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryan MR, Shepherd R, Leavey JK, Gao Y, Grassi F, Schnell FJ, Qian WP, Kersh GJ, Weitzmann MN, Pacifici R (2005) An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Pro Natl Acad Sci USA 102(46):16735–16740. https://doi.org/10.1073/pnas.0505168102

    Article  CAS  Google Scholar 

  26. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839–3848. https://doi.org/10.1182/blood-2006-07-037994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeo L, Toellner KM, Salmon M, Filer A, Buckley CD, Raza K, Scheel-Toellner D (2011) Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 70(11):2022–2028. https://doi.org/10.1136/ard.2011.153312

    Article  CAS  PubMed  Google Scholar 

  28. Han X, Lin X, Seliger AR, Eastcott J, Kawai T, Taubman MA (2009) Expression of receptor activator of nuclear factor-kappa B ligand by B cells in response to oral bacteria. Oral Microbiol Immunol 24(3):190–196. https://doi.org/10.1111/j.1399-302x.2008.00494.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanematsu M, Sato T, Takai H, Watanabe K, Ikeda K, Yamada Y (2000) Prostaglandin E-2 induces expression of receptor activator of nuclear factor B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res 15(7):1321–1329. https://doi.org/10.1359/jbmr.2000.15.7.1321

    Article  CAS  PubMed  Google Scholar 

  30. Onal M, Xiong J, Chen X, Thostenson JD, Almeida M, Manolagas SC, O’Brien CA (2012) Receptor activator of nuclear factor Kb ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem 287(35):29851–29860. https://doi.org/10.1074/jbc.m112.377945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang GC, Xu YH, Chen HX, Wang XJ (2015) Acute lymphoblastic leukemia cells inhibit the differentiation of bone mesenchymal stem cells into osteoblastsin vitro by activating notch signaling. Stem Cells Int 2015:162410. https://doi.org/10.1155/2015/162410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao B, Fu X, Yu Y, Yang D (2018) Regulatory effects of miRNA-181a on FasL expression in bone marrow mesenchymal stem cells and its effect on CD4+T lymphocyte apoptosis in estrogen deficiency-induced osteoporosis. Mol Med Rep 18(1):920–930. https://doi.org/10.3892/mmr.2018.9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98(24):13960–5. https://doi.org/10.1073/pnas.251534698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Shanghai Municipal Health Commission (No.201740028) and National Natural Science Foundation of China (No.81102071).

Author information

Authors and Affiliations

Authors

Contributions

XX and WH designed the study and did the cell culture and answered all the questions of the reviewers; LT and XX performed the ELISA and flow cytometry experiments; WL, RG and LH contributed to the animal experiments; XX and XS analyzed the data; and WH wrote the manuscript. All authors have read and approved the final manuscript to be published.

Corresponding authors

Correspondence to Wei Hong or Xiaoya Xu.

Ethics declarations

Conflict of interest

Wei Hong, Lichen Tang, Rui Ge, Weiping Li, Xiaoyong Shen, Lixia Hong and Xiaoya Xu declare that they have no conflict of interest.

Ethical Approval

Ethical approval was provided by the Committee on Animal Resources of Fudan University.

Informed Consent

For this type of study, no informed consent is required.

Human and Animal Rights

All procedures performed in studies involving animals were in accordance with the ethical standards of the Institutional Animal Ethics Committee of Fudan University at which the studies were conducted (NO.2012-03-FYS-GJJ-01).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Tang, L., Ge, R. et al. Persistent Abnormal Immunocytes Induced Systemic Bone Loss in Locally Irradiated Rats. Calcif Tissue Int 109, 706–718 (2021). https://doi.org/10.1007/s00223-021-00883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00883-8

Keywords

Navigation