Skip to main content

Advertisement

Log in

Long-Term High-Dose Resveratrol Supplementation Reduces Bone Mass and Fracture Strength in Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Resveratrol (RSV) is a natural polyphenolic compound. A recent study suggests a positive effect on BMD in men; however, the underlying changes in microstructure and strength remain unknown. We aimed to investigate the effects of RSV on the skeleton in hindlimb-immobilized and non-immobilized rats. Seventy-two female Wistar rats were divided into six groups. Two baseline (BSL) groups underwent short-term diet intervention for 4 weeks before sacrifice [phytoestrogen-deficient diet (PD) (BSL + PD) or RSV diet (600 mg/kg body weight/day) (BSL + RSV)]. Four groups were injected in the right hindlimb with botulinum toxin (BTX) (immobilized) or saline (non-immobilized), and fed either PD diet or RSV diet 4 weeks pre-injection and 6 weeks post-injection before sacrifice (BTX + PD, BTX + RSV, PD, and RSV, respectively). DXA, µCT, dynamic histomorphometry, and mechanical tests were performed. Short-term RSV treatment did not affect bone parameters, whereas long-term RSV exposure had a consistent negative impact on non-immobilized rats (RSV vs. PD); whole femoral aBMD (p = 0.01) and distal femoral metaphyseal Tb.N (p = 0.01), Tb.Sp (p = 0.02), and BV/TV (p = 0.07). At the femoral mid-diaphysis, RSV increased periosteal resorption (p = 0.01) and increased endosteal formation (p = 0.02), while mineralization was unaffected. In addition, RSV reduced femoral mid-diaphyseal three-point bending strength (p = 0.03) and stiffness (p = 0.04). BTX-induced immobilization resulted in significant bone loss and reduced bone strength; however, RSV supplementation was unable to prevent this. In conclusion, long-term high-dose RSV reduced bone mass and fracture strength and did not prevent immobilization-induced bone loss in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  2. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N.Engl. J Med 344:1434–1441

    CAS  Google Scholar 

  3. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348:1535–1541

    Article  CAS  PubMed  Google Scholar 

  4. Cummings SR, San MJ, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  CAS  PubMed  Google Scholar 

  5. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  6. Ornstrup MJ, Harslof T, Sorensen L, Stenkjaer L, Langdahl BL, Pedersen SB (2016) Resveratrol increases osteoblast differentiation in vitro independently of inflammation. Calcif Tissue Int 99(2):155–163

    Article  CAS  PubMed  Google Scholar 

  7. Shakibaei M, Buhrmann C, Mobasheri A (2011) Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem 286:11492–11505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boissy P, Andersen TL, Abdallah BM, Kassem M, Plesner T, Delaisse JM (2005) Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res 65:9943–9952

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Shang L, Li X, Zhang X, Gao G, Guo C, Chen B, Liu Q, Gong Y, Shao C (2009) Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp Cell Res 315:2953–2962

    Article  CAS  PubMed  Google Scholar 

  10. Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14:806–814

    Article  CAS  PubMed  Google Scholar 

  11. Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, Mobasheri A (2012) Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS ONE 7:e35712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gehm BD, McAndrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 94:14138–14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizutani K, Ikeda K, Kawai Y, Yamori Y (1998) Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 253:859–863

    Article  CAS  PubMed  Google Scholar 

  14. Poulsen MM, Ornstrup MJ, Harslof T, Jessen N, Langdahl BL, Richelsen B, Jorgensen JO, Pedersen SB (2014) Short-term resveratrol supplementation stimulates serum levels of bone-specific alkaline phosphatase in obese non-diabetic men. J Funct Foods 6:305–310

    Article  CAS  Google Scholar 

  15. Ornstrup MJ, Harslof T, Kjaer TN, Langdahl BL, Pedersen SB (2014) Resveratrol increases bone mineral density and bone alkaline phosphatase in obese men: a randomized placebo-controlled trial. J Clin Endocrinol Metab 99:4720–4729

    Article  CAS  PubMed  Google Scholar 

  16. Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS (2006) Botox induced muscle paralysis rapidly degrades bone. Bone 38:257–264

    Article  CAS  PubMed  Google Scholar 

  17. Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegiel MH, Heegaard AM, Christophersen P, Martin TJ, Christiansen C, Bollerslev J (2005) Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol 166:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neutzsky-Wulff AV, Karsdal MA, Henriksen K (2008) Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int 83:425–437

    Article  CAS  PubMed  Google Scholar 

  19. Thomsen JS, Christensen LL, Vegger JB, Nyengaard JR, Bruel A (2012) Loss of bone strength is dependent on skeletal site in disuse osteoporosis in rats. Calcif Tissue Int 90:294–306

    Article  CAS  PubMed  Google Scholar 

  20. Bruel A, Vegger JB, Raffalt AC, Andersen JE, Thomsen JS (2013) PTH (1-34), but not strontium ranelate counteract loss of trabecular thickness and bone strength in disuse osteopenic rats. Bone 53:51–58

    Article  CAS  PubMed  Google Scholar 

  21. Vegger JB, Nielsen ES, Bruel A, Thomsen JS (2014) Additive effect of PTH (1-34) and zoledronate in the prevention of disuse osteopenia in rats. Bone 66:287–295

    Article  CAS  PubMed  Google Scholar 

  22. Williams LD, Burdock GA, Edwards JA, Beck M, Bausch J (2009) Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem Toxicol 47:2170–2182

    Article  CAS  PubMed  Google Scholar 

  23. Tou JC (2014) Resveratrol supplementation affects bone acquisition and osteoporosis: Pre-clinical evidence toward translational diet therapy. Biochim Biophys Acta 1852(6):1186–1194

    Article  PubMed  Google Scholar 

  24. Tou JC (2015) Evaluating resveratrol as a therapeutic bone agent: preclinical evidence from rat models of osteoporosis. Ann NY Acad Sci 1348:75–85

    Article  CAS  PubMed  Google Scholar 

  25. Liu ZP, Li WX, Yu B, Huang J, Sun J, Huo JS, Liu CX (2005) Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model. J Med Food 8:14–19

    Article  CAS  PubMed  Google Scholar 

  26. Zhao H, Li X, Li N, Liu T, Liu J, Li Z, Xiao H, Li J (2014) Long-term resveratrol treatment prevents ovariectomy-induced osteopenia in rats without hyperplastic effects on the uterus. Br J Nutr 111:836–846

    Article  CAS  PubMed  Google Scholar 

  27. Durbin SM, Jackson JR, Ryan MJ, Gigliotti JC, Alway SE, Tou JC (2013) Resveratrol supplementation preserves long bone mass, microstructure, and strength in hindlimb-suspended old male rats. J. Bone Miner, Metab

    Google Scholar 

  28. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le CD, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo CR (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Habold C, Momken I, Ouadi A, Bekaert V, Brasse D (2011) Effect of prior treatment with resveratrol on density and structure of rat long bones under tail-suspension. J Bone Miner Metab 29:15–22

    Article  CAS  PubMed  Google Scholar 

  30. Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S, Stein TP, Sebedio JL, Pujos-Guillot E, Falempin M, Simon C, Coxam V, Andrianjafiniony T, Gauquelin-Koch G, Picquet F, Blanc S (2011) Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J. 25:3646–3660

    Article  CAS  PubMed  Google Scholar 

  31. Sehmisch S, Hammer F, Christoffel J, Seidlova-Wuttke D, Tezval M, Wuttke W, Stuermer KM, Stuermer EK (2008) Comparison of the phytohormones genistein, resveratrol and 8-prenylnaringenin as agents for preventing osteoporosis. Planta Med 74:794–801

    Article  CAS  PubMed  Google Scholar 

  32. Mobasheri A, Shakibaei M (2013) Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis. Ann N Y Acad Sci 1290:59–66

    Article  CAS  PubMed  Google Scholar 

  33. Durbin SM, Jackson JR, Ryan MJ, Gigliotti JC, Alway SE, Tou JC (2012) Resveratrol supplementation influences bone properties in the tibia of hindlimb-suspended mature Fisher 344 x Brown Norway male rats. Appl Physiol Nutr Metab 37:1179–1188

    Article  CAS  PubMed  Google Scholar 

  34. Lee AM, Shandala T, Nguyen L, Muhlhausler BS, Chen KM, Howe PR, Xian CJ (2014) Effects of resveratrol supplementation on bone growth in young rats and microarchitecture and remodeling in ageing rats. Nutrients 6:5871–5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    CAS  PubMed  Google Scholar 

  36. Ornstrup MJ, Kjaer TN, Harslof T, Stodkilde-Jorgensen H, Hougaard DM, Cohen A, Pedersen SB, Langdahl BL (2015) Adipose tissue, estradiol levels, and bone health in obese men with metabolic syndrome. Eur J Endocrinol 172:205–216

    Article  PubMed  Google Scholar 

  37. Sverrisdottir A, Fornander T, Jacobsson H, von Schoultz SE, Rutqvist LE (2004) Bone mineral density among premenopausal women with early breast cancer in a randomized trial of adjuvant endocrine therapy. J Clin Oncol 22:3694–3699

    Article  CAS  PubMed  Google Scholar 

  38. Vehmanen L, Elomaa I, Blomqvist C, Saarto T (2006) Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J Clin Oncol 24:675–680

    Article  CAS  PubMed  Google Scholar 

  39. Sibonga JD, Evans GL, Hauck ER, Bell NH, Turner RT (1996) Ovarian status influences the skeletal effects of tamoxifen in adult rats. Breast Cancer Res Treat 41:71–79

    Article  CAS  PubMed  Google Scholar 

  40. Powles TJ, Hickish T, Kanis JA, Tidy A, Ashley S (1996) Effect of tamoxifen on bone mineral density measured by dual-energy X-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 14:78–84

    Article  CAS  PubMed  Google Scholar 

  41. Kanis JA, Johnell O, Black DM, Downs RW Jr, Sarkar S, Fuerst T, Secrest RJ, Pavo I (2003) Effect of raloxifene on the risk of new vertebral fracture in postmenopausal women with osteopenia or osteoporosis: a reanalysis of the Multiple Outcomes of Raloxifene Evaluation trial. Bone 33:293–300

    Article  CAS  PubMed  Google Scholar 

  42. Pinkerton JV, Thomas S (2014) Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol Biol 142:142–154

    Article  CAS  PubMed  Google Scholar 

  43. Smith MR, Fallon MA, Lee H, Finkelstein JS (2004) Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J Clin Endocrinol Metab 89:3841–3846

    Article  CAS  PubMed  Google Scholar 

  44. Ke HZ, Qi H, Crawford DT, Chidsey-Frink KL, Simmons HA, Thompson DD (2000) Lasofoxifene (CP-336,156), a selective estrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology 141:1338–1344

    Article  CAS  PubMed  Google Scholar 

  45. National Research Council (US) Institute for Laboratory Animal Research (1996) Guide for the Care and Use of Laboratory Animals

Download references

Acknowledgements

The authors are grateful for the excellent technical assistance of Jytte Utoft and collaboration with Kim Henriksen (Nordic Bioscience A/S, Herlev, Denmark). We thank Visiopharm for the contribution to the newCAST stereology software system. The μCT scanner was kindly donated by the VELUX Foundation.

Funding

The study is a part of the research program LIRMOI Research Center (www.LIRMOI.com). LIRMOI is supported by the Danish Council for Strategic Research (Grant 10-093499).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed this study. MJO prepared the first draft of the paper, and she is guarantor. MJO was responsible for statistical analysis of the data. MJO, AB, and JST contributed to the experimental work, and all authors revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work and to ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved.

Corresponding author

Correspondence to Marie Juul Ornstrup.

Ethics declarations

Conflict of interest

Marie Juul Ornstrup, Annemarie Brüel, Jesper Skovhus Thomsen, Torben Harsløf, Bente Lomholt Langdahl, Steen Bønløkke Pedersen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All applicable international, national, and institutional guidelines for the care and use of animals were followed, and all experiments and procedures complied with the guiding principles in the Guide for the Care and Use of Laboratory Animals [45] and was approved by the Danish Animal Experiments Inspectorate (2012-15-2934-00769).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ornstrup, M.J., Brüel, A., Thomsen, J.S. et al. Long-Term High-Dose Resveratrol Supplementation Reduces Bone Mass and Fracture Strength in Rats. Calcif Tissue Int 102, 337–347 (2018). https://doi.org/10.1007/s00223-017-0344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0344-6

Keywords

Navigation