Skip to main content

Advertisement

Log in

Bicarbonate Transport During Enamel Maturation

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal–lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid–base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alper SL (2006) Molecular physiology of SLC4 anion exchangers. Exp Physiol 91:153–161

    Article  CAS  PubMed  Google Scholar 

  2. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Applebaum E, Zegarelli EV, Kutscher AH, Denning CR, Fahn B (1964) Discoloration of the teeth in patients with cystic fibrosis of the pancreas. Histologic studies. Oral Surg Oral Med Oral Pathol 17:366–367

    Article  CAS  PubMed  Google Scholar 

  4. Arquitt CK, Boyd C, Wright JT (2002) Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation. J Dent Res 81:492–496

    Article  CAS  PubMed  Google Scholar 

  5. Azevedo TD, Feijo GC, Bezerra AC (2006) Presence of developmental defects of enamel in cystic fibrosis patients. J Dent Child 73:159–163

    Google Scholar 

  6. Banales JM, Saez E, Uriz M, Sarvide S, Urribarri AD, Splinter P, Tietz Bogert PS, Bujanda L, Prieto J, Medina JF, LaRusso NF (2012) Up-regulation of microRNA 506 leads to decreased Cl−/HCO3 anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 56:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bori E, Guo J, Racz R, Burghardt B, Foldes A, Keremi B, Harada H, Steward MC, Den Besten P, Bronckers AL, Varga G (2016) Evidence for bicarbonate secretion by ameloblasts in a novel cellular model. J Dent Res 95:588–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bronckers A, Kalogeraki L, Jorna HJ, Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten P, de Jonge H (2010) The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone 46:1188–1196

    Article  CAS  PubMed  Google Scholar 

  9. Bronckers AL (2017) Ion transport by ameloblasts during amelogenesis. J Dent Res 96:243–253

    Article  CAS  PubMed  Google Scholar 

  10. Bronckers AL, Guo J, Zandieh-Doulabi B, Bervoets TJ, Lyaruu DM, Li X, Wangemann P, DenBesten P (2011) Developmental expression of solute carrier family 26A member 4 (SLC26A4/pendrin) during amelogenesis in developing rodent teeth. Eur J Oral Sci 119(Suppl 1):185–192

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bronckers AL, Lyaruu DM, Guo J, Bijvelds MJ, Bervoets TJ, Zandieh-Doulabi B, Medina JF, Li Z, Zhang Y, DenBesten PK (2015) Composition of mineralizing incisor enamel in cystic fibrosis transmembrane conductance regulator-deficient mice. Eur J Oral Sci 123:9–16

    Article  CAS  PubMed  Google Scholar 

  12. Bronckers AL, Lyaruu DM, Jansen ID, Medina JF, Kellokumpu S, Hoeben KA, Gawenis LR, Oude-Elferink RP, Everts V (2009) Localization and function of the anion exchanger Ae2 in developing teeth and orofacial bone in rodents. J Exp Zool B Mol Dev Evol 312B:375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ (1997) Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100:1693–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao H, Wang J, Li X, Florez S, Huang Z, Venugopalan SR, Elangovan S, Skobe Z, Margolis HC, Martin JF, Amendt BA (2010) MicroRNAs play a critical role in tooth development. J Dent Res 89:779–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang EH, Lacruz RS, Bromage TG, Bringas P Jr, Welsh MJ, Zabner J, Paine ML (2011) Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model. Cells Tissues Organs 194:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chegwidden WR, Dodgson SJ, Spencer IM (2000) The roles of carbonic anhydrase in metabolism, cell growth and cancer in animals. EXS 90:343–363

    CAS  Google Scholar 

  17. Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779

    Article  CAS  PubMed  Google Scholar 

  18. Cua FT (1991) Calcium and phosphorous in teeth from children with and without cystic fibrosis. Biol Trace Elem Res 30:277–289

    Article  CAS  PubMed  Google Scholar 

  19. Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D (2010) Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest 120:706–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ, Romero MF (2004) A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem 279:52238–52246

    Article  CAS  PubMed  Google Scholar 

  21. Dogterom AA, Bronckers AL (1983) Carbonic anhydrase in developing hamster molars. J Dent Res 62:789–791

    Article  CAS  PubMed  Google Scholar 

  22. Duan X (2014) Ion channels, channelopathies, and tooth formation. J Dent Res 93:117–125

    Article  CAS  PubMed  Google Scholar 

  23. Duan X, Mao Y, Wen X, Yang T, Xue Y (2011) Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. J Dent Res 90:175–180

    Article  CAS  PubMed  Google Scholar 

  24. Einum DD, Zhang J, Arneson PJ, Menon AG, Ptacek LJ (1998) Genomic structure of human anion exchanger 3 and its potential role in hereditary neurological disease. Neurogenetics 1:289–292

    Article  CAS  PubMed  Google Scholar 

  25. Fan Y, Zhou Y, Zhou X, Sun F, Gao B, Wan M, Zhou X, Sun J, Xu X, Cheng L, Crane J, Zheng L (2015) MicroRNA 224 regulates ion transporter expression in ameloblasts to coordinate enamel mineralization. Mol Cell Biol 35:2875–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Freel RW, Hatch M, Green M, Soleimani M (2006) Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290:G719–G728

    Article  CAS  PubMed  Google Scholar 

  27. Garant PR, Nagy A, Cho MI (1984) A freeze-fracture study of ruffle-ended post-secretory ameloblasts. J Dent Res 63:622–628

    Article  CAS  PubMed  Google Scholar 

  28. Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3 cotransporter. J Biol Chem 282:9042–9052

    Article  CAS  PubMed  Google Scholar 

  29. Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A et al (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    Article  CAS  PubMed  Google Scholar 

  30. Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14:316–319

    Article  CAS  PubMed  Google Scholar 

  31. Hubbard MJ (2000) Calcium transport across the dental enamel epithelium. Crit Rev Oral Biol Med 11:437–466

    Article  CAS  PubMed  Google Scholar 

  32. Inatomi J, Horita S, Braverman N, Sekine T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H, Shimadzu M, Endou H, Fujita T, Seki G, Igarashi T (2004) Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch 448:438–444

    Article  CAS  PubMed  Google Scholar 

  33. Jagels AE, Sweeney EA (1976) Oral health of patients with cystic fibrosis and their siblings. J Dent Res 55:991–996

    Article  CAS  PubMed  Google Scholar 

  34. Jalali R, Guo J, Zandieh-Doulabi B, Bervoets TJ, Paine ML, Boron WF, Parker MD, Bijvelds MJ, Medina JF, DenBesten PK, Bronckers AL (2014) NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse. Cell Tissue Res 358:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jalali R, Zandieh-Doulabi B, DenBesten PK, Seidler U, Riederer B, Wedenoja S, Micha D, Bronckers AL (2015) Slc26a3/Dra and Slc26a6 in murine ameloblasts. J Dent Res 94:1732–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jarolim P, Rubin HL, Liu SC, Cho MR, Brabec V, Derick LH, Yi SJ, Saad ST, Alper S, Brugnara C et al (1994) Duplication of 10 nucleotides in the erythroid band 3 (AE1) gene in a kindred with hereditary spherocytosis and band 3 protein deficiency (band 3PRAGUE). J Clin Invest 93:121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38:474–478

    Article  CAS  PubMed  Google Scholar 

  38. Josephsen K, Fejerskov O (1977) Ameloblast modulation in the maturation zone of the rat incisor enamel organ. A light and electron microscopic study. J Anat 124:45–70

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Josephsen K, Takano Y, Frische S, Praetorius J, Nielsen S, Aoba T, Fejerskov O (2010) Ion transporters in secretory and cyclically modulating ameloblasts: a new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol 299:C1299–C1307

    Article  CAS  PubMed  Google Scholar 

  40. Kakei M, Nakahara H (1996) Aspects of carbonic anhydrase and carbonate content during mineralization of the rat enamel. Biochim Biophys Acta 1289:226–230

    Article  PubMed  Google Scholar 

  41. Lacruz RS (2017) Enamel: molecular identity of its transepithelial ion transport system. Cell Calcium 65:1–7

    Article  CAS  PubMed  Google Scholar 

  42. Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML (2013) Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res 28:672–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lacruz RS, Habelitz S, Wright JT, Paine ML (2017) Dental enamel formation and implications for oral health and disease. Physiol Rev 97:939–993

    Article  PubMed  Google Scholar 

  44. Lacruz RS, Hilvo M, Kurtz I, Paine ML (2010) A survey of carbonic anhydrase mRNA expression in enamel cells. Biochem Biophys Res Commun 393:883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML (2010) Regulation of pH during amelogenesis. Calcif Tissue Int 86:91–103

    Article  CAS  PubMed  Google Scholar 

  46. Lacruz RS, Nanci A, White SN, Wen X, Wang H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I, Paine ML (2010) The sodium bicarbonate cotransporter (NBCe1) is essential for normal development of mouse dentition. J Biol Chem 285:24432–24438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lacruz RS, Smith CE, Bringas P Jr, Chen YB, Smith SM, Snead ML, Kurtz I, Hacia JG, Hubbard MJ, Paine ML (2012) Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling. J Cell Physiol 227:2264–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lacruz RS, Smith CE, Chen YB, Hubbard MJ, Hacia JG, Paine ML (2011) Gene-expression analysis of early- and late-maturation-stage rat enamel organ. Eur J Oral Sci 119(Suppl 1):149–157

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lacruz RS, Smith CE, Kurtz I, Hubbard MJ, Paine ML (2013) New paradigms on the transport functions of maturation-stage ameloblasts. J Dent Res 92:122–129

    Article  CAS  PubMed  Google Scholar 

  50. Lacruz RS, Smith CE, Moffatt P, Chang EH, Bromage TG, Bringas P Jr, Nanci A, Baniwal SK, Zabner J, Welsh MJ, Kurtz I, Paine ML (2012) Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol 227:1776–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lagerstrom-Fermer M, Nilsson M, Backman B, Salido E, Shapiro L, Pettersson U, Landegren U (1995) Amelogenin signal peptide mutation: correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta. Genomics 26:159–162

    Article  CAS  PubMed  Google Scholar 

  52. Li A, Song T, Wang F, Liu D, Fan Z, Zhang C, He J, Wang S (2012) MicroRNAome and expression profile of developing tooth germ in miniature pigs. PLoS ONE 7:e52256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin HM, Nakamura H, Noda T, Ozawa H (1994) Localization of H(+)-ATPase and carbonic anhydrase II in ameloblasts at maturation. Calcif Tissue Int 55:38–45

    Article  CAS  PubMed  Google Scholar 

  54. Liu H, Lin H, Zhang L, Sun Q, Yuan G, Zhang L, Chen S, Chen Z (2013) miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop. J Biol Chem 288:9261–9271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lyaruu DM, Bronckers AL, Mulder L, Mardones P, Medina JF, Kellokumpu S, Oude Elferink RP, Everts V (2008) The anion exchanger Ae2 is required for enamel maturation in mouse teeth. Matrix Biol 27:119–127

    Article  CAS  PubMed  Google Scholar 

  56. Lyman GE, Waddell WJ (1977) pH gradients in the developing teeth of young mice from autoradiography of [14C]DMO. Am J Physiol 232:F364–F367

    CAS  PubMed  Google Scholar 

  57. Medina JF, Martinez A, Vazquez JJ, Prieto J (1997) Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 25:12–17

    Article  CAS  PubMed  Google Scholar 

  58. Michon F (2011) Tooth evolution and dental defects: from genetic regulation network to micro-RNA fine-tuning. Birth Defects Res A 91:763–769

    Article  CAS  Google Scholar 

  59. Nanci A (2008) Ten Cate’s oral histology development, structure and function. Mosby Elsevier, St Louis

    Google Scholar 

  60. Paine ML, Snead ML, Wang HJ, Abuladze N, Pushkin A, Liu W, Kao LY, Wall SM, Kim YH, Kurtz I (2008) Role of NBCe1 and AE2 in secretory ameloblasts. J Dent Res 87:391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan P, Leppilampi M, Pastorekova S, Pastorek J, Waheed A, Sly WS, Parkkila S (2006) Carbonic anhydrase gene expression in CA II-deficient (Car2−/−) and CA IX-deficient (Car9−/−) mice. J Physiol 571:319–327

    Article  CAS  PubMed  Google Scholar 

  62. Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139:620–631

    Article  CAS  PubMed  Google Scholar 

  63. Pastorekova S, Parkkila S, Pastorek J, Supuran CT (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 19:199–229

    Article  CAS  PubMed  Google Scholar 

  64. Petrovic S, Barone S, Xu J, Conforti L, Ma L, Kujala M, Kere J, Soleimani M (2004) SLC26A7: a basolateral Cl/HCO3 exchanger specific to intercalated cells of the outer medullary collecting duct. Am J Physiol Renal Physiol 286:F161–F169

    Article  CAS  PubMed  Google Scholar 

  65. Petrovic S, Ju X, Barone S, Seidler U, Alper SL, Lohi H, Kere J, Soleimani M (2003) Identification of a basolateral Cl/HCO3 exchanger specific to gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 284:G1093–G1103

    Article  CAS  PubMed  Google Scholar 

  66. Petrovic S, Ma L, Wang Z, Soleimani M (2003) Identification of an apical Cl/HCO3 exchanger in rat kidney proximal tubule. Am J Physiol Cell Physiol 285:C608–C617

    Article  CAS  PubMed  Google Scholar 

  67. Romero MF, Chen AP, Parker MD, Boron WF (2013) The SLC4 family of bicarbonate (HCO(3)(−)) transporters. Mol Aspects Med 34:159–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sasaki S, Takagi T, Suzuki M (1991) Cyclical changes in pH in bovine developing enamel as sequential bands. Arch Oral Biol 36:227–231

    Article  CAS  PubMed  Google Scholar 

  69. Shapiro JL, Wen X, Okamoto CT, Wang HJ, Lyngstadaas SP, Goldberg M, Snead ML, Paine ML (2007) Cellular uptake of amelogenin, and its localization to CD63, and Lamp1-positive vesicles. Cell Mol Life Sci 64:244–256

    Article  CAS  PubMed  Google Scholar 

  70. Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, Sadeh O, Glaser B (1996) Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 12:424–426

    Article  CAS  PubMed  Google Scholar 

  71. Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108

    Article  CAS  PubMed  Google Scholar 

  72. Skobe Z, Prostak KS, Stern DN (1988) A scanning electron microscope study of monkey maturation-stage ameloblasts. J Dent Res 67:1396–1401

    Article  CAS  PubMed  Google Scholar 

  73. Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    Article  CAS  PubMed  Google Scholar 

  74. Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161

    Article  CAS  PubMed  Google Scholar 

  75. Smith CE, Issid M, Margolis HC, Moreno EC (1996) Developmental changes in the pH of enamel fluid and its effects on matrix-resident proteinases. Adv Dent Res 10:159–169

    Article  CAS  PubMed  Google Scholar 

  76. Smith CE, Nanci A (1995) Overview of morphological changes in enamel organ cells associated with major events in amelogenesis. Int J Dev Biol 39:153–161

    CAS  PubMed  Google Scholar 

  77. Smith CE, Nanci A (1996) Protein dynamics of amelogenesis. Anat Rec 245:186–207

    Article  CAS  PubMed  Google Scholar 

  78. Smith CE, Nanci A, Moffatt P (2006) Evidence by signal peptide trap technology for the expression of carbonic anhydrase 6 in rat incisor enamel organs. Eur J Oral Sci 114(Suppl 1):147–153

    Article  CAS  PubMed  Google Scholar 

  79. Sugimoto T, Ogawa Y, Kuwahara H, Shimazaki M, Yagi T, Sakai A (1988) Histochemical demonstration of carbonic anhydrase activity in the odontogenic cells of the rat incisor. J Dent Res 67:1271–1274

    Article  CAS  PubMed  Google Scholar 

  80. Sui W, Boyd C, Wright JT (2003) Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res 82:388–392

    Article  CAS  PubMed  Google Scholar 

  81. Supuran CT (2008) Carbonic anhydrases–an overview. Curr Pharm Des 14:603–614

    Article  CAS  PubMed  Google Scholar 

  82. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  CAS  PubMed  Google Scholar 

  83. Takano Y (1995) Enamel mineralization and the role of ameloblasts in calcium transport. Connect Tissue Res 33:127–137

    Article  CAS  PubMed  Google Scholar 

  84. Tang L, Fatehi M, Linsdell P (2009) Mechanism of direct bicarbonate transport by the CFTR anion channel. J Cyst Fibros 8:115–121

    Article  CAS  PubMed  Google Scholar 

  85. Toyosawa S, Ogawa Y, Inagaki T, Ijuhin N (1996) Immunohistochemical localization of carbonic anhydrase isozyme II in rat incisor epithelial cells at various stages of amelogenesis. Cell Tissue Res 285:217–225

    Article  CAS  PubMed  Google Scholar 

  86. Wright JT, Hall KI, Grubb BR (1996) Enamel mineral composition of normal and cystic fibrosis transgenic mice. Adv Dent Res 10:270–274

    Article  CAS  PubMed  Google Scholar 

  87. Wright JT, Kiefer CL, Hall KI, Grubb BR (1996) Abnormal enamel development in a cystic fibrosis transgenic mouse model. J Dent Res 75:966–973

    Article  CAS  PubMed  Google Scholar 

  88. Xu J, Song P, Nakamura S, Miller M, Barone S, Alper SL, Riederer B, Bonhagen J, Arend LJ, Amlal H, Seidler U, Soleimani M (2009) Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 284:29470–29479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML (2017) Deletion of Slc26a1 and Slc26a7 delays enamel mineralization in mice. Front Physiol 8:307

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yin K, Hacia JG, Zhong Z, Paine ML (2014) Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis. BMC Genomics 15:998

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yin K, Lei Y, Wen X, Lacruz RS, Soleimani M, Kurtz I, Snead ML, White SN, Paine ML (2015) SLC26A gene family participate in pH regulation during enamel maturation. PLoS ONE 10:e0144703

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yin K, Lin W, Guo J, Sugiyama T, Snead ML, Hacia JG, Paine ML (2017) MiR-153 regulates amelogenesis by targeting endocytotic and endosomal/lysosomal pathways-novel insight into the origins of enamel pathologies. Sci Rep 7:44118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zegarelli EV, Kutscher AH, Denning CR, Applebaum E, Fahn BS, Hoffman PJ, Botwick JT, Ragosta JM (1964) Discoloration of the teeth in older children with cystic fibrosis of the pancreas. Am J Dig Dis 9:682–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bridget Samuels for help with the preparation of the manuscript.

Funding

This work was supported by NIH/NIDCR [Grants # R01 DE019629 and R21 DE024704 (M.L.P), R90 DE022582 (K.Y)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Paine.

Ethics declarations

Conflict of interest

Kaifeng Yin and Michael L. Paine declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Paine, M.L. Bicarbonate Transport During Enamel Maturation. Calcif Tissue Int 101, 457–464 (2017). https://doi.org/10.1007/s00223-017-0311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0311-2

Keywords

Navigation