Skip to main content

Advertisement

Log in

Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption, and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases, and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone’s structural and material hierarchy, and identify three principal pathways by which they determine bone’s mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone’s structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load-bearing structural proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mccreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15(12):2305–2308

    Article  CAS  PubMed  Google Scholar 

  2. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bouxsein ML (2003) Bone quality: where do we go from here? Osteoporos Int 14(5):118–127

    Article  Google Scholar 

  4. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19(12):2000–2004

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sroga GE, Vashishth D (2012) Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep 10(2):141–150

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ferris BD, Klenerman L, Dodds RA, Bitensky L, Chayen J (1987) Altered organization of non-collagenous bone matrix in osteoporosis. Bone 8(5):285–288

    Article  CAS  PubMed  Google Scholar 

  7. Grynpas MD, Tupy JH, Sodek J (1994) The distribution of soluble, mineral-bound, and matrix-bound proteins in osteoporotic and normal bones. Bone 15(5):505–513

    Article  CAS  PubMed  Google Scholar 

  8. Ducy P, Desbois C, Boyce B, Pinero G et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452

    Article  CAS  PubMed  Google Scholar 

  9. Gundberg CM (2003) Matrix proteins. Osteoporos Int 14(5):37–42

    Article  Google Scholar 

  10. Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J (1991) A role for osteocalcin in osteoclast differentiation. J Cell Biochem 45(3):292–302

    Article  CAS  PubMed  Google Scholar 

  11. Rittling SR, Matsumoto HN, Mckee MD et al (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13(7):1101–1111

    Article  CAS  PubMed  Google Scholar 

  12. Romberg RW, Werness PG, Riggs BL, Mann KG (1986) Inhibition of hydroxyapatite-crystal growth by bone-specific and other calcium-binding proteins. Biochemistry 25(5):1176–1180

    Article  CAS  PubMed  Google Scholar 

  13. Price PA (1989) Gla-containing proteins of bone. Connect Tissue Res 21(1–4):51–60

    Article  CAS  PubMed  Google Scholar 

  14. Boskey AL (1989) Noncollagenous matrix proteins and their role in mineralization. Bone Miner. 6(2):111–123

    Article  CAS  PubMed  Google Scholar 

  15. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23(3):187–196

    Article  CAS  PubMed  Google Scholar 

  16. Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12(9):107R–116R

    Article  CAS  PubMed  Google Scholar 

  17. Nikel O, Laurencin D, McCallum SA, Gundberg CM, Vashishth D (2013) NMR investigation of the role of osteocalcin and osteopontin at the organic-inorganic interface in bone. Langmuir 29(45):13873–13882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71(2):145–154

    Article  CAS  PubMed  Google Scholar 

  19. Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB (2007) Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res Part A 83(1):136–144

    Article  Google Scholar 

  20. Hansma PK, Fantner GE, Kindt JH et al (2005) Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact 5(4):313

    CAS  PubMed  Google Scholar 

  21. Gupta HS, Wagermaier W, Zickler GA et al (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5(10):2108–2111

    Article  CAS  PubMed  Google Scholar 

  22. Poundarik A, Diab T, Sroga GE et al (2012) Dilatational band formation in bone. Proc Natl Acad Sci 109(47):19178–19183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Garnero P, Delmas PD (2004) Contribution of bone mineral density and bone turnover markers to the estimation of risk of osteoporotic fracture in postmenopausal women. J Musculoskelet Neuronal Interact 4(1):50

    CAS  PubMed  Google Scholar 

  24. Seibel MJ (2005) Biochemical markers of bone turnover part I: biochemistry and variability. Clin Biochemist 26(4):97

    Google Scholar 

  25. Ammann P, Rizzoli R, Meyer JM, Bonjour JP (1996) Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporos Int 6(3):219–227

    Article  CAS  PubMed  Google Scholar 

  26. Crabtree N, Loveridge N, Parker M, Rushton N et al (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16(7):1318–1328

    Article  CAS  PubMed  Google Scholar 

  27. Cole JH, van der Meulen MC (2011) Whole bone mechanics and bone quality. Clin Orthop Relat Res 469(8):2139–2149

    Article  PubMed Central  PubMed  Google Scholar 

  28. Van der Meulen MCH, Jepsen KJ, Mikić B (2001) Understanding bone strength: size isn’t everything. Bone 29(2):101–104

    Article  PubMed  Google Scholar 

  29. Wolf G (1996) Function of the bone protein osteocalcin: definitive evidence. Nutr Rev 54(10):332–333

    Article  CAS  PubMed  Google Scholar 

  30. Ingram RT, Clarke BL, Fisher LW, Fitzpatrick LA (1993) Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8(9):1019–1029

    Article  CAS  PubMed  Google Scholar 

  31. Xu T, Bianco P, Fisher LW, Longenecker G et al (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20(1):78–82

    Article  CAS  PubMed  Google Scholar 

  32. Corsi A, Xu T, Chen XD, Boyde A et al (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17(7):1180–1189

    Article  CAS  PubMed  Google Scholar 

  33. Arteaga-Solis E, Sui-Arteaga L, Kim M, Schaffler MB et al (2011) Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils. Matrix Biol 30(3):188–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Termine JD, Kleinman HK, Whitson SW, Conn KM et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26(1):99–105

    Article  CAS  PubMed  Google Scholar 

  35. Delany AM, Amling M, Priemel M et al (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Investig 105(7):915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rios H, Koushik SV, Wang H, Wang J et al (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25(24):11131–11144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bonnet N, Standley KN, Bianchi EN, Stadelmann V et al (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284(51):35939–35950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gowen LC, Petersen DN, Mansolf AL, Qi H et al (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278(3):1998–2007

    Article  CAS  PubMed  Google Scholar 

  39. Malaval L, Wade-Guéye NM, Boudiffa M, Fei J et al (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205(5):1145–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Thurner PJ, Chen CG, Ionova-Martin S et al (2010) Osteopontin deficiency increases bone fragility but preserves bone mass. Bone 46(6):1564–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22(2):286–297

    Article  CAS  PubMed  Google Scholar 

  42. Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11(3):279–303

    Article  CAS  PubMed  Google Scholar 

  43. Delany AM, Hankenson KD (2009) Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 3(3–4):227–238

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bonnet N, Gineyts E, Ammann P, Conway SJ, Garnero P, Ferrari S (2013) Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One 8(10):e78347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Currey JD (1984) Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B 304(1121):509–518

    Article  CAS  Google Scholar 

  46. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16

    Article  CAS  PubMed  Google Scholar 

  47. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336

    Article  CAS  PubMed  Google Scholar 

  48. Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Current Osteoporos Rep 5(2):62–66

    Article  Google Scholar 

  49. Yoshitake H, Rittling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci 96(14):8156–8160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Rodriguez DE, Thula-Mata T, Toro EJ, Yeh YW, Holt C, Holliday LS, Gower LB (2014) Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater 10(1):494–507

    Article  CAS  PubMed  Google Scholar 

  51. Boskey A (2003) Bone mineral crystal size. Osteoporosis international 14(5):16–21

    Google Scholar 

  52. Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35(suppl 2):ii27–ii31

    PubMed  Google Scholar 

  53. Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci 73(5):1447–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB (2009) Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed Mater 2(4):348–354

    Article  CAS  PubMed  Google Scholar 

  55. Jepsen KJ, Davy DT, Krzypow DJ (1999) The role of the lamellar interface during torsional yielding of human cortical bone. J Biomech 32(3):303–310

    Article  CAS  PubMed  Google Scholar 

  56. Vashishth D (2004) Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech 37(6):943–946

    Article  PubMed  Google Scholar 

  57. Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg 57(7):956–961

    CAS  PubMed  Google Scholar 

  58. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28(2):195–201

    Article  CAS  PubMed  Google Scholar 

  59. Kavukcuoglu NB, Arteaga-Solis E, Lee-Arteaga S, Ramirez F, Mann AB (2007) Nanomechanics and Raman spectroscopy of fibrillin 2 knock-out mouse bones. J Mater Sci 42(21):8788–8794

    Article  CAS  Google Scholar 

  60. Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223:587–597

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136(3):729–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Hoshi K, Kemmotsu S, Takeuchi Y, Amizuka N, Ozawa H (1999) The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J Bone Miner Res 14(2):273–280

    Article  CAS  PubMed  Google Scholar 

  63. Sugars RV, Milan AM, Brown JO, Waddington RJ et al (2002) Molecular interaction of recombinant decorin and biglycan with type I collagen influences crystal growth. Connect Tissue Res 44:189–195

    Article  Google Scholar 

  64. Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61(4):298–305

    Article  CAS  PubMed  Google Scholar 

  65. Garnero P (2012) The contribution of collagen crosslinks to bone strength. Bonekey Rep 1:182

    Article  PubMed Central  PubMed  Google Scholar 

  66. Termine JD, Kleinman HK, Whitson SW et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26(1):99–105

    Article  CAS  PubMed  Google Scholar 

  67. Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18(6):1005–1011

    Article  CAS  PubMed  Google Scholar 

  68. Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17(4):S365–S371

    Article  Google Scholar 

  69. Vashishth D (2005) Collagen glycation and its role in fracture properties of bone. J Musculoskelet Neuronal Interact 5(4):316

    CAS  PubMed  Google Scholar 

  70. Landis WJ, Hodgens KJ, Song MJ, Arena J et al (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117(1):24–35

    Article  CAS  PubMed  Google Scholar 

  71. Sasaki N, Nakayama Y, Yoshikawa M, Enyo A (1993) Stress relaxation function of bone and bone collagen. J Biomech 26(12):1369–1376

    Article  CAS  PubMed  Google Scholar 

  72. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6(6):454–462

    Article  CAS  PubMed  Google Scholar 

  73. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond B Biol Sci 234(1277):415–440

    Article  Google Scholar 

  75. Barthelat F, Rabiei R (2011) Toughness amplification in natural composites. J Mech Phys Solids 59(4):829–840

    Article  Google Scholar 

  76. Maruyama N, Shibata Y, Mochizuki A, Yamada A et al (2015) Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands. Biomaterials 47:62–71

    Article  CAS  PubMed  Google Scholar 

  77. Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7(8):877–885

    Article  CAS  PubMed  Google Scholar 

  78. Thompson JB, Kindt JH, Drake B, Hansma HG et al (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414(6865):773–776

    Article  CAS  PubMed  Google Scholar 

  79. Hassenkam T, Fantner GE, Cutroni JA, Weaver JC et al (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10

    Article  PubMed  Google Scholar 

  80. Fantner GE, Hassenkam T, Kindt JH et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616

    Article  CAS  PubMed  Google Scholar 

  81. Fantner GE, Adams J, Turner P, Thurner PJ et al (2007) Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett 7(8):2491–2498

    Article  CAS  PubMed  Google Scholar 

  82. Diab T, Vashishth D (2005) Effects of damage morphology on cortical bone fragility. Bone 37(1):96–102

    Article  CAS  PubMed  Google Scholar 

  83. Diab T, Vashishth D (2007) Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 40(3):612–618

    Article  PubMed Central  PubMed  Google Scholar 

  84. Burr DB, Turner CH, Naick P, Forwood MR et al (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31(4):337–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases AR49635.

Conflict of interest

Ms. Stacyann Morgan, Dr. Atharva Poundarik, and Dr. Deepak Vashishth report no biomedical financial interest or potential conflict of interest.

Human and Animal Rights and Informed Consent

All studies were carried out in compliance with NIH and IACUC guidelines for animal use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Vashishth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, S., Poundarik, A.A. & Vashishth, D. Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?. Calcif Tissue Int 97, 281–291 (2015). https://doi.org/10.1007/s00223-015-0016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0016-3

Keywords

Navigation