Skip to main content
Log in

Characterizing the Composition of Bone Formed During Fracture Healing Using Scanning Electron Microscopy Techniques

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

About 5–10 % of all bone fractures suffer from delayed healing, which may lead to non-union. Bone morphogenetic proteins (BMPs) can be used to induce differentiation of osteoblasts and enhance the formation of the bony callus, and bisphosphonates help to retain the newly formed callus. The aim of this study was to investigate if scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) can identify differences in the mineral composition of the newly formed bone compared to cortical bone from a non-fractured control. Moreover, we investigate whether the use of BMPs and bisphosphonates—alone or combined—may have an effect on bone mineralization and composition. Twelve male Sprague–Dawley rats at 9 weeks of age were randomly divided into four groups and treated with (A) saline, (B) BMP-7, (C) bisphosphonates (Zoledronate), and (D) BMP-7 + Zoledronate. The rats were sacrificed after 6 weeks. All samples were imaged using SEM and chemically analyzed with EDS to quantify the amount of C, N, Ca, P, O, Na, and Mg. The Ca/P ratio was the primary outcome. In the fractured samples, two areas of interest were chosen for chemical analysis with EDS: the callus and the cortical bone. In the non-fractured samples, only the cortex was analyzed. Our results showed that the element composition varied to a small extent between the callus and the cortical bone in the fractured bones. However, the Ca/P ratio did not differ significantly, suggesting that the mineralization at all sites is similar 6 weeks post-fracture in this rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skinner HCW (2005) Mineralogy of bone. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology: impacts of the natural environment on public health. Elsevier, Boston, pp 667–693

    Google Scholar 

  2. Chen PY, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 88:351–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Murugan R, Ramakrishna S, Panduranga Rao K (2006) Nanoporous hydroxy-carbonate apatite scaffold made of natural bone. Mater Lett 60:2844–2847

    Article  CAS  Google Scholar 

  4. Allen MR, Burr DB (2007) Mineralization, microdamage, and matrix: how bisphosphonates influence material properties of bone. BoneKEy Osteovision 4:49–60

    Article  Google Scholar 

  5. Turunen MJ, Saarakkala S, Rieppo L, Helminen HJ, Jurvelin JS, Isaksson H (2011) Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Appl Spectrosc 65:595–603

    Article  CAS  PubMed  Google Scholar 

  6. Victoria G, Petrisor B, Drew B, Dick D (2009) Bone stimulation for fracture healing: what’s all the fuss? Indian J Orthop 43:117–120

    Article  PubMed Central  PubMed  Google Scholar 

  7. Groeneveld E, Burger E (2000) Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142:9–21

    Article  CAS  PubMed  Google Scholar 

  8. Bosemark P, Isaksson H, McDonald MM, Little DG, Tägil M (2013) Augmentation of autologous bone graft by a combination of bone morphogenic protein and bisphosphonate increased both callus volume and strength. Acta Orthop 84:106–111

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jeppsson C, Åstrand J, Tägil M, Aspenberg P (2003) A combination of bisphosphonate and BMP additives in impacted bone allografts. Acta Orthop 74:483–489

    Article  Google Scholar 

  10. Rodan GA (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  CAS  PubMed  Google Scholar 

  11. Li EC, Davis LE (2003) Zoledronic acid: a new parenteral bisphosphonate. Clin Ther 25:2669–2708

    Article  CAS  PubMed  Google Scholar 

  12. Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, Hirano T, Johnston CC (2003) Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone 33:960–969

    Article  CAS  PubMed  Google Scholar 

  13. Shapiro R, Heaney RP (2003) Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone 32:532–540

    Article  CAS  PubMed  Google Scholar 

  14. Tzaphlidou M (2008) Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys 34:39–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kourkoumelis N, Balatsoukas I, Tzaphlidou M (2012) Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys 38:279–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tzaphlidou M, Speller R, Royle G, Griffiths J (2006) Preliminary estimates of the calcium/phosphorus ratio at different cortical bone sites using synchrotron microCT. Phys Med Biol 51:1849–1855

    Article  CAS  PubMed  Google Scholar 

  17. Midura RJ, Vasanji A, Su X, Wang A, Midura SB, Gorski JP (2007) Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone 41:1005–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49

    Article  CAS  Google Scholar 

  19. Tagil M, McDonald MM, Morse A, Peacock L, Mikulec K, Amanat N, Godfrey C, Little DG (2010) Intermittent PTH(1-34) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures. Bone 46:852–859

    Article  PubMed  Google Scholar 

  20. Grynpas MD, Pritzker KP, Hancock RG (1987) Neutron activation analysis of bulk and selected trace elements in bones using a low flux SLOWPOKE reactor. Biol Trace Elem Res 13:333–344

    Article  CAS  PubMed  Google Scholar 

  21. Åkesson K, Grynpas MD, Hancock RGV, Odselius R, Obrant KJ (1994) Energy-dispersive X-ray microanalysis of the bone mineral content in human trabecular bone: a comparison with ICPES and neutron activation analysis. Calcif Tissue Int 55:236–239

    Article  PubMed  Google Scholar 

  22. Yu S, Yu Z, Wang G, Han J, Ma X, Dargusch MS (2011) Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy. Colloids Surf B 85:103–115

    Article  CAS  Google Scholar 

  23. Little DG, McDonald M, Bransford R, Godfrey CB, Amanat N (2005) Manipulation of the anabolic and catabolic responses with OP-1 and zoledronic acid in a rat critical defect model. J Bone Miner Res 20:2044–2052

    Article  CAS  PubMed  Google Scholar 

  24. Gross KA, Berndt CC (2002) Biomedical application of apatites. Rev Mineral Geochem 48:631–672

    Article  CAS  Google Scholar 

  25. Ren FZ, Leng Y (2012) Carbonated apatite, type-A or type-B? Key Eng Mater 493:293–297

    Google Scholar 

  26. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Article  Google Scholar 

  27. Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238

    Article  CAS  PubMed  Google Scholar 

  28. Cohen AM, Talmi YP, Floru S, Tsigelman R, Kalmanovitz M, Zohar Y, Djaldetti M (1991) X-ray microanalysis of ossified auricles in Addison’s disease. Calcif Tissue Int 48:88–92

    Article  CAS  PubMed  Google Scholar 

  29. Green LJ, Eick JD, Miller WA, Leitner JW (1970) Electron microprobe analysis of Ca, P, and Mg in mandibular bone. J Dent Res 49:608–615

    Article  CAS  PubMed  Google Scholar 

  30. Gentleman E, Swain RJ, Evans ND, Boonrungsiman S, Jell G, Ball MD, Shean TA, Oyen ML, Porter A, Stevens MM (2009) Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat Mater 8:763–770

    Article  CAS  PubMed  Google Scholar 

  31. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  CAS  PubMed  Google Scholar 

  32. Henricson A, Hulth A, Johnell O (1987) The cartilaginous fracture callus in rats. Acta Orthop Scand 58:244–248

    Article  CAS  PubMed  Google Scholar 

  33. Preininger B, Checa S, Molnar FL, Fratzl P, Duda GN, Raum K (2011) Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. Ultrasound Med Biol 37:474–483

    Article  PubMed  Google Scholar 

  34. Markel MD, Wikenheiser MA, Chao EY (1990) A study of fracture callus material properties: relationship to the torsional strength of bone. J Orthop Res 8:843–850

    Article  CAS  PubMed  Google Scholar 

  35. Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP (2007) Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41:928–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Project was funded from the European Commission (FRACQUAL-293434), the Swedish Agency for Innovation Systems, Vinnova, Carl Trygger foundation (CTS 12:200, CTS 13:185), and the foundations of Greta and Johan Kock. The authors would like to thank Prof. Reine Wallenberg and Ms. Gunnel Karlsson (Centre for Analysis and Synthesis, LU) for the technical support and scientific discussions. The authors would also like to thank Ms. Mea Pelkonen, MSc (Department of Orthopaedics, Lund University) for her valuable assistance with the sample preparation.

Conflict of interest

Christina Perdikouri, Magnus Tägil, and Hanna Isaksson state that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

The study was approved by the local animal ethics committee at Lund University (ethical permit number: M216-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Perdikouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdikouri, C., Tägil, M. & Isaksson, H. Characterizing the Composition of Bone Formed During Fracture Healing Using Scanning Electron Microscopy Techniques. Calcif Tissue Int 96, 11–17 (2015). https://doi.org/10.1007/s00223-014-9930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9930-z

Keywords

Navigation