Skip to main content

Advertisement

Log in

Matrix concentration inequalities and free probability

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A central tool in the study of nonhomogeneous random matrices, the noncommutative Khintchine inequality, yields a nonasymptotic bound on the spectral norm of general Gaussian random matrices \(X=\sum _{i} g_{i} A_{i}\) where \(g_{i}\) are independent standard Gaussian variables and \(A_{i}\) are matrix coefficients. This bound exhibits a logarithmic dependence on dimension that is sharp when the matrices \(A_{i}\) commute, but often proves to be suboptimal in the presence of noncommutativity. In this paper, we develop nonasymptotic bounds on the spectrum of arbitrary Gaussian random matrices that can capture noncommutativity. These bounds quantify the degree to which the spectrum of \(X\) is captured by that of a noncommutative model \(X_{\mathrm{free}}\) that arises from free probability theory. This “intrinsic freeness” phenomenon provides a powerful tool for the study of various questions that are outside the reach of classical methods of random matrix theory. Our nonasymptotic bounds are easily applicable in concrete situations, and yield sharp results in examples where the noncommutative Khintchine inequality is suboptimal. When combined with a linearization argument, our bounds imply strong asymptotic freeness for a remarkably general class of Gaussian random matrix models that may be very sparse, have dependent entries, and lack any special symmetries. When combined with a universality principle, our bounds extend beyond the Gaussian setting to general sums of independent random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We write \(x\lesssim y\) if \(x\le Cy\) for a universal constant \(C\), and \(x\asymp y\) if \(x\lesssim y\) and \(y\lesssim x\).

  2. Throughout this section ⊗ always denotes the minimal tensor product of \(C^{*}\)-algebras.

  3. After the initial version of this paper appeared, a complete solution of the Peterson-Thom conjecture was proposed in [7] using methods specific to GUE matrices. We retain Proposition 8.3 to illustrate what may be achieved by the completely general methods of this paper.

References

  1. Alt, J., Erdős, L., Krüger, T.: The Dyson equation with linear self-energy: spectral bands, edges and cusps. Doc. Math. 25, 1421–1539 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Au, B.: Traffic distributions of random band matrices. Electron. J. Probab. 23, Paper No. 77, 48 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.D., Yin, Y.Q.: Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Probab. 21(3), 1275–1294 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandeira, A.S.: Ten lectures and forty-two open problems in the mathematics of data science. Lecture notes (2015)

  6. Bandeira, A.S., van Handel, R.: Sharp nonasymptotic bounds on the norm of random matrices with independent entries. Ann. Probab. 44(4), 2479–2506 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belinschi, S., Capitaine, M.: Strong convergence of tensor products of independent GUE matrices. Preprint (2022). arXiv:2205.07695

  8. Bordenave, C., Collins, B.: Strong asymptotic freenes for independent uniform variables on compact groups associated to non-trivial representations. Preprint (2020). arXiv:2012.08759

  9. Bose, A.: Patterned Random Matrices. CRC Press, Boca Raton (2018)

    Book  MATH  Google Scholar 

  10. Brailovskaya, T., van Handel, R.: Universality and sharp matrix concentration inequalities. Preprint (2022). arXiv:2201.05142

  11. Cai, T.T., Han, R., Zhang, A.R.: On the non-asymptotic concentration of heteroskedastic Wishart-type matrix. Electron. J. Probab. 27, Paper No. 29, 40 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calderón, A.-P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Collins, B., Male, C.: The strong asymptotic freeness of Haar and deterministic matrices. Ann. Sci. Éc. Norm. Supér. (4) 47(1), 147–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins, B., Guionnet, A., Parraud, F.: On the operator norm of non-commutative polynomials in deterministic matrices and iid GUE matrices. Camb. J. Math. 10(1), 195–260 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davidson, K.R., Szarek, S.J.: Local operator theory, random matrices and Banach spaces. In: Handbook of the Geometry of Banach Spaces, vol. I, pp. 317–366. North-Holland, Amsterdam (2001)

    Chapter  MATH  Google Scholar 

  16. Erdős, L., Mühlbacher, P.: Bounds on the norm of Wigner-type random matrices. Random Matrices: Theory Appl. 8(3), 1950009, 28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fleermann, M., Kirsch, W., Kriecherbauer, T.: The almost sure semicircle law for random band matrices with dependent entries. Stoch. Process. Appl. 131, 172–200 (2021)

    Article  MathSciNet  Google Scholar 

  18. Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea, New York (1959). Translated by K.A. Hirsch

    MATH  Google Scholar 

  19. Haagerup, U., Thorbjørnsen, S.: Random matrices and \(K\)-theory for exact \(C^{\ast}\)-algebras. Doc. Math. 4, 341–450 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haagerup, U., Thorbjørnsen, S.: A new application of random matrices: \({\mathrm{Ext}}(C^{*}_{\mathrm{red}}(F_{2}))\) is not a group. Ann. Math. (2) 162(2), 711–775 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haagerup, U., Schultz, H., Thorbjørnsen, S.: A random matrix approach to the lack of projections in \(C^{*}_{\mathrm{red}}(\mathbb{F}_{2})\). Adv. Math. 204(1), 1–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hayes, B.: A random matrix approach to the Peterson-Thom conjecture. Indiana Univ. Math. J. 71(3), 1243–1297 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koltchinskii, V., Lounici, K.: Concentration inequalities and moment bounds for sample covariance operators. Bernoulli 23(1), 110–133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Latała, R., van Handel, R., Youssef, P.: The dimension-free structure of nonhomogeneous random matrices. Invent. Math. 214(3), 1031–1080 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  26. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  27. Lehner, F.: Computing norms of free operators with matrix coefficients. Am. J. Math. 121(3), 453–486 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mingo, J.A., Speicher, R.: Free Probability and Random Matrices. Fields Institute Monographs, vol. 35. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto (2017)

    MATH  Google Scholar 

  29. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  30. Parraud, F.: Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices. Commun. Math. Phys. 399(1), 249–294 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pisier, G.: Introduction to Operator Space Theory. London Mathematical Society Lecture Note Series, vol. 294. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  32. Pisier, G., Xu, Q.: Non-commutative \(L^{p}\)-spaces. In: Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1459–1517. North-Holland, Amsterdam (2003)

    Chapter  MATH  Google Scholar 

  33. Rudelson, M.: Random vectors in the isotropic position. J. Funct. Anal. 164(1), 60–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rudelson, M., Zeitouni, O.: Singular values of Gaussian matrices and permanent estimators. Random Struct. Algorithms 48(1), 183–212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schultz, H.: Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases. Probab. Theory Relat. Fields 131(2), 261–309 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shlyakhtenko, D.: Random Gaussian band matrices and freeness with amalgamation. Int. Math. Res. Not. 20, 1013–1025 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Talagrand, M.: Mean Field Models for Spin Glasses. Volume I: Basic Examples. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 54. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  38. Tao, T.: Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132. Am. Math. Soc., Providence (2012)

    MATH  Google Scholar 

  39. Tropp, J.A.: An introduction to matrix concentration inequalities. Found. Trends Mach. Learn. 8, 1–230 (2015)

    Article  MATH  Google Scholar 

  40. Tropp, J.A.: The expected norm of a sum of independent random matrices: an elementary approach. In: High Dimensional Probability VII. Progr. Probab., vol. 71, pp. 173–202. Springer, Cham (2016)

    Chapter  Google Scholar 

  41. Tropp, J.A.: Second-order matrix concentration inequalities. Appl. Comput. Harmon. Anal. 44(3), 700–736 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. van Handel, R.: On the spectral norm of Gaussian random matrices. Trans. Am. Math. Soc. 369(11), 8161–8178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. van Handel, R.: Structured random matrices. In: Convexity and Concentration. IMA Vol. Math. Appl., vol. 161, pp. 107–156. Springer, New York (2017)

    Chapter  Google Scholar 

  44. Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math. 104(1), 201–220 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Benson Au, Tatiana Brailovskaya, Ioana Dumitriu, Antti Knowles, Gilles Pisier, Mark Rudelson, Dominik Schröder, Joel Tropp, Nikita Zhivotovskiy, and Yizhe Zhu for interesting discussions, and the referees for helpful suggestions and feedback.

Funding

M.T.B. was supported in part by NSF grant DMS-1856221, and the NSF-Simons Collaboration on Theoretical Foundations of Deep Learning. R.v.H. was supported in part by NSF grants DMS-1811735 and DMS-2054565, and the Simons Collaboration on Algorithms & Geometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon van Handel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandeira, A.S., Boedihardjo, M.T. & van Handel, R. Matrix concentration inequalities and free probability. Invent. math. 234, 419–487 (2023). https://doi.org/10.1007/s00222-023-01204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-023-01204-6

Keywords

Mathematics Subject Classification (2010)

Navigation