Skip to main content

Advertisement

Log in

Szegő condition, scattering, and vibration of Krein strings

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We give a dynamical characterization of measures on the real line with finite logarithmic integral. The general case is considered in the setting of evolution groups generated by de Branges canonical systems. Obtained results are applied to the Dirac operators and Krein strings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agranovich, Z.S., Marchenko, V.A.: The Inverse Problem of Scattering Theory. Gordon and Breach Science Publishers, New York (1963). Translated from the Russian by B. D. Seckler

    MATH  Google Scholar 

  2. Belishev, M.I.: Boundary control and inverse problems: a one-dimensional version of the boundary control method. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 354(Matematicheskie Voprosy Teorii Rasprostraneniya Voln. 37):19–80, 245, 2008

  3. Ben-Artzi, M.: On the absolute continuity of Schrödinger operators with spherically symmetric, long-range potentials. I, II. J. Differ. Equ. 38(1), 41–50, 51–60 (1980)

    MATH  Google Scholar 

  4. Ben-Artzi, M., Devinatz, A.: Spectral and scattering theory for the adiabatic oscillator and related potentials. J. Math. Phys. 20(4), 594–607 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Berezanskiĭ, Yu.M.: Selfadjoint Operators in Spaces of Functions of Infinitely Many Variables. Translations of Mathematical Monographs, vol. 63. Am. Math. Soc., Providence (1986). Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver

    Google Scholar 

  6. Bessonov, R.V.: Szegő condition and scattering for one-dimensional Dirac operators. Constr. Approx. 51(2), 273–302 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Bessonov, R., Denisov, S.: A spectral Szegő theorem on the real line. Adv. Math. 359, 106851 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Bessonov, R., Denisov, S.: De Branges canonical systems with finite logarithmic integral. Anal. PDE 14(5), 1509–1556 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Bessonov, R., Lukic, M., Yuditskii, P.: Reflectionless canonical systems, I. Arov gauge and right limits (2014). arXiv:2011.05261. Preprint

  10. Birman, M.Š., Kreĭn, M.G.: On the theory of wave operators and scattering operators. Dokl. Akad. Nauk SSSR 144, 475–478 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Borichev, A., Sodin, M.: Weighted exponential approximation and non-classical orthogonal spectral measures. Adv. Math. 226(3), 2503–2545 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Brown, B.M., Klaus, M., Malamud, M., Mogilevskii, V., Wood, I.: Weyl solutions and \(j\)-selfadjointness for Dirac operators. J. Math. Anal. Appl. 480(2), 123344 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Buslaev, V., Pushnitski, A.: The scattering matrix and associated formulas in Hamiltonian mechanics. Commun. Math. Phys. 293(2), 563–588 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Christ, M., Kiselev, A.: Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials. Geom. Funct. Anal. 12(6), 1174–1234 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Damanik, D., Tcheremchantsev, S.: A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators. Discrete Contin. Dyn. Syst. 28(4), 1381–1412 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Damanik, D., Fang, L., Sukhtaiev, S.: Zero measure and singular continuous spectra for quantum graphs. Ann. Henri Poincaré 21(7), 2167–2191 (2020)

    MathSciNet  MATH  Google Scholar 

  17. de Branges, L.: Some Hilbert spaces of entire functions. ii. Trans. Am. Math. Soc. 99, 118–152 (1961)

    MathSciNet  MATH  Google Scholar 

  18. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs (1968)

    MATH  Google Scholar 

  19. Deift, P.: Inverse scattering on the line - an overview. In: Differential Equations and Mathematical Physics, Birmingham, AL, 1990. Math. Sci. Engrg., vol. 186, pp. 45–62. Academic Press, Boston (1992)

    Google Scholar 

  20. Deift, P., Its, A., Krasovsky, I.: Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results. Commun. Pure Appl. Math. 66(9), 1360–1438 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Denisov, S.A.: On the existence of wave operators for some Dirac operators with square summable potential. Geom. Funct. Anal. 14(3), 529–534 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Denisov, S.A.: Continuous analogs of polynomials orthogonal on the unit circle and Kreĭn systems. Int. Math. Res. Surv. 2006, 54517 (2006)

    MATH  Google Scholar 

  23. Denisov, S.A.: Wave equation with slowly decaying potential: asymptotics of solution and wave operators. Math. Model. Nat. Phenom. 5(4), 122–149 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Denisov, S.A.: Spatial asymptotics of Green’s function for elliptic operators and applications: a.c. spectral type, wave operators for wave equation. Trans. Am. Math. Soc. 371(12), 8907–8970 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Denisov, S., Mohamed, L.: Generalizations of Menchov-Rademacher theorem and existence of wave operators in Schrödinger evolution. Can. J. Math. 73(2), 360–382 (2021)

    MATH  Google Scholar 

  26. Devinatz, A.: The existence of wave operators for oscillating potentials. J. Math. Phys. 21(9), 2406–2411 (1980)

    MathSciNet  MATH  Google Scholar 

  27. Dym, H., McKean, H.P.: Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Probability and Mathematical Statistics, vol. 31. Academic Press, York-London (1976)

    MATH  Google Scholar 

  28. Erdoğan, M., Green, W.: On the one dimensional Dirac equation with potential. J. Math. Pures Appl. 9(151), 132–170 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Faddeev, L., Takhtajan, L.: Hamiltonian Methods in the Theory of Solitons, English edn. Classics in Mathematics. Springer, Berlin (2007). Translated from the 1986 Russian original by Alexey G. Reyman

    Google Scholar 

  30. Feller, W.: On second order differential operators. Ann. of Math. (2) 61, 90–105 (1955)

    MathSciNet  MATH  Google Scholar 

  31. Gantmacher, F.R.: The Theory of Matrices. Vols. 1, 2. Chelsea Publishing Co., New York (1959). Translated by K. A. Hirsch

    Google Scholar 

  32. Garnett, J.B.: Bounded Analytic Functions. Pure and Applied Mathematics, vol. 96. Academic Press, York (1981)

    MATH  Google Scholar 

  33. Gohberg, I.C., Kreĭn, M.G.: Theory and Applications of Volterra Operators in Hilbert Space. Translations of Mathematical Monographs, vol. 24. Am. Math. Soc., Providence (1970). Translated from the Russian by A. Feinstein

    MATH  Google Scholar 

  34. Hörmander, L.: The existence of wave operators in scattering theory. Math. Z. 146(1), 69–91 (1976)

    MathSciNet  MATH  Google Scholar 

  35. Hruščev, S.V.: The Regge problem for strings, unconditionally convergent eigenfunction expansions, and unconditional bases of exponentials in \(L^{2}(-T,T)\). J. Oper. Theory 14(1), 67–85 (1985)

    MathSciNet  Google Scholar 

  36. Hruščëv, S.V., Nikol’skiĭ, N.K., Pavlov, B.S.: Unconditional bases of exponentials and of reproducing kernels. In: Complex Analysis and Spectral Theory, Leningrad, 1979/1980. Lecture Notes in Math., vol. 864, pp. 214–335. Springer, Berlin (1981)

    Google Scholar 

  37. Hughes, D., Schmidt, K.: Absolutely continuous spectrum of Dirac operators with square-integrable potentials. Proc. R. Soc. Edinb., Sect. A 144(3), 533–555 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Ibragimov, I.A., Rozanov, Y.A.: Gaussian Random Processes. Applications of Mathematics, vol. 9. Springer, New York-Berlin (1978)

    MATH  Google Scholar 

  39. Kac, I.S., Krein, M.G.: On the spectral functions of the string. Supplement II to the Russian edition of F.V. Atkinson, Discrete and continuous boundary problems, 1968. English translation: Amer. Math. Soc. Transl., (2) 103 (1974), 19–102

  40. Kaltenbäck, M., Winkler, H., Woracek, H.: Strings, dual strings, and related canonical systems. Math. Nachr. 280(13–14), 1518–1536 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    MATH  Google Scholar 

  42. Kats, I.S.: Linear relations generated by canonical differential equations. Funkc. Anal. Prilozh. 17(4), 86–87 (1983)

    MathSciNet  MATH  Google Scholar 

  43. Khrushchev, S.: Schur’s algorithm, orthogonal polynomials, and convergence of Wall’s continued fractions in \(L^{2}(T)\). J. Approx. Theory 108(2), 161–248 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Killip, R., Simon, B.: Sum rules and spectral measures of Schrödinger operators with \(L^{2}\) potentials. Ann. of Math. (2) 170(2), 739–782 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Killip, R., Kiselev, A., Last, Y.: Dynamical upper bounds on wavepacket spreading. Am. J. Math. 125(5), 1165–1198 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Koosis, P.: The Logarithmic Integral. II. Cambridge Studies in Advanced Mathematics, vol. 21. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  47. Koosis, P.: Introduction to \(H_{p}\) Spaces, 2nd edn. Cambridge Tracts in Mathematics, vol. 115. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  48. Koosis, P.: The Logarithmic Integral. I. Cambridge Studies in Advanced Mathematics, vol. 12. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  49. Korey, M.: Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation. J. Fourier Anal. Appl. 4(4–5), 491–519 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Kostenko, A., Nicolussi, N.: Quantum graphs on radially symmetric antitrees. J. Spectr. Theory 11(2), 411–460 (2021)

    MathSciNet  MATH  Google Scholar 

  51. Krein, M.: On a problem of extrapolation of A. N. Kolmogoroff. C. R. (Dokl.) Acad. Sci. URSS 46, 306–309 (1945)

    MathSciNet  MATH  Google Scholar 

  52. Kreĭn, M.G.: On the theory of entire matrix functions of exponential type. Ukr. Mat. Zh. 3, 164–173 (1951)

    MathSciNet  Google Scholar 

  53. Krein, M.G.: On a basic approximation problem of the theory of extrapolation and filtration of stationary random processes. Dokl. Akad. Nauk SSSR 94, 13–16 (1954)

    MathSciNet  MATH  Google Scholar 

  54. Kreĭn, M.G.: Continuous analogues of propositions on polynomials orthogonal on the unit circle. Dokl. Akad. Nauk SSSR 105, 637–640 (1955)

    MathSciNet  Google Scholar 

  55. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. A Wiley Interscience Publication Wiley, New York (1974)

    MATH  Google Scholar 

  56. Kupin, S., Peherstorfer, F., Volberg, A., Yuditskii, P.: Inverse scattering problem for a special class of canonical systems and non-linear Fourier integral. Part I: Asymptotics of eigenfunctions. In: Methods of Spectral Analysis in Mathematical Physics. Oper. Theory Adv. Appl., vol. 186, pp. 285–323. Birkhäuser, Basel (2009)

    MATH  Google Scholar 

  57. Laptev, A., Naboko, S., Safronov, O.: A Szegő condition for a multidimensional Schrödinger operator. J. Funct. Anal. 219(2), 285–305 (2005)

    MathSciNet  MATH  Google Scholar 

  58. Lax, P., Phillips, R.: Scattering Theory, 2nd edn. Pure and Applied Mathematics, vol. 26. Academic Press, Boston (1989)

    MATH  Google Scholar 

  59. Lesch, M., Malamud, M.: On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Differ. Equ. 189(2), 556–615 (2003)

    MathSciNet  MATH  Google Scholar 

  60. Levin, B.Ya.: Lectures on entire functions. Translations of Mathematical Monographs, vol. 150. Am. Math. Soc., Providence (1996). In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko

    Google Scholar 

  61. Levitan, B.M., Sargsjan, I.S.: Sturm-Liouville and Dirac Operators. Mathematics and Its Applications (Soviet Series), vol. 59. Kluwer Academic, Dordrecht (1991). Translated from the Russian

    Google Scholar 

  62. Liu, W.: Revisiting the Christ-Kiselev’s multi-linear operator technique and its applications to Schrödinger operators. Nonlinearity 34(3), 1288–1315 (2021)

    MathSciNet  MATH  Google Scholar 

  63. Matveev, V.B., Skriganov, M.M.: Wave operators for a Schrödinger equation with rapidly oscillating potential. Dokl. Akad. Nauk SSSR 202, 755–757 (1972)

    MathSciNet  MATH  Google Scholar 

  64. Pearson, D.B.: Singular continuous measures in scattering theory. Commun. Math. Phys. 60(1), 13–36 (1978)

    MathSciNet  MATH  Google Scholar 

  65. Peller, V.V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003)

    MATH  Google Scholar 

  66. Poltoratski, A.: Pointwise convergence of the non-linear Fourier transform (2021). arXiv:2103.13349. Preprint

  67. Potapov, V.P.: The multiplicative structure of \(J\)-contractive matrix functions. Trudy Moskov. Mat. Obšč. 4, 125–236 (1955)

    MathSciNet  Google Scholar 

  68. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. III. Academic Press, New York (1979)

    MATH  Google Scholar 

  69. Remling, C.: Spectral Theory of Canonical Systems. De Gruyter Studies in Mathematics Series. de Gruyter, Berlin (2018)

    MATH  Google Scholar 

  70. Robinson, D.W.: Propagation properties in scattering theory. J. Aust. Math. Soc. Ser. B 21(4), 474–485 (1979/80)

  71. Romanov, R.: Canonical systems and de Branges spaces (2014). arXiv:1408.6022. Preprint

  72. Ruelle, D.: A remark on bound states in potential-scattering theory. Nuovo Cimento A 10(61), 655–662 (1969)

    MathSciNet  Google Scholar 

  73. Safronov, O.: Absolutely continuous spectrum of a Dirac operator in the case of a positive mass. Ann. Henri Poincaré 18(4), 1385–1434 (2017)

    MathSciNet  MATH  Google Scholar 

  74. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. American Mathematical Society Colloquium Publications, vol. 54. Am. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  75. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. American Mathematical Society Colloquium Publications, vol. 54. Am. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  76. Simon, B.: Szegő’s Theorem and Its Descendants: Spectral Theory for \(L^{2}\) Perturbations of Orthogonal Polynomials. M. B. Porter Lectures. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  77. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, vol. XXIII. Am. Math. Soc., Providence (1975)

    MATH  Google Scholar 

  78. Teplyaev, A.: A note on the theorems of M. G. Krein and L. A. Sakhnovich on continuous analogs of orthogonal polynomials on the circle. J. Funct. Anal. 226(2), 257–280 (2005)

    MathSciNet  MATH  Google Scholar 

  79. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. Mathematical Surveys and Monographs, vol. 72. Am. Math. Soc., Providence (2000)

    MATH  Google Scholar 

  80. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer, Berlin (1992)

    MATH  Google Scholar 

  81. Volberg, A., Yuditskii, P.: On the inverse scattering problem for Jacobi matrices with the spectrum on an interval, a finite system of intervals or a Cantor set of positive length. Commun. Math. Phys. 226(3), 567–605 (2002)

    MathSciNet  MATH  Google Scholar 

  82. White, D.: Schrödinger operators with rapidly oscillating central potentials. Trans. Am. Math. Soc. 275(2), 641–677 (1983)

    MATH  Google Scholar 

  83. Winkler, H.: The inverse spectral problem for canonical systems. Integral Equ. Oper. Theory 22(3), 360–374 (1995)

    MathSciNet  MATH  Google Scholar 

  84. Yafaev, D.: Mathematical Scattering Theory: General Theory. Translations of Mathematical Monographs, vol. 105. Am. Math. Soc., Providence (1992). Translated from the Russian by J. R. Schulenberger

    MATH  Google Scholar 

Download references

Funding

Research of RB in Sects. 2.1-2.4, 4 is supported by the Russian Science Foundation grant 19-71-30002. Research of SD in Sects. 2.5-2.7, 3 is supported by NSF DMS-1764245, NSF DMS-2054465, and Van Vleck Professorship Research Award. RB is a Young Russian Mathematics award winner and would like to thank its sponsors and jury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Denisov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we collect a few auxiliary results and prove some statements made in the main text.

1.1 A.1 Proof of Proposition 2.8

The modification of the proofs in [8] yields the statement. Alternatively, one can argue as follows. First, we claim that (2.25) implies (2.26) for \(\alpha _{n}=\lambda n\) with any \(\lambda >0\). Indeed, if \(m_{\lambda}\) and \(\mu _{\lambda}\) denote Titchmarsh-Weyl function and spectral measure, respectively, of canonical system with Hamiltonian \(\mathcal {H}(\lambda \tau )\), then \(m_{\lambda}(z)=m_{1}(\lambda ^{-1} z)\) as follows from (1-5) in [8]. Now, it is enough to observe that \(\mu _{\lambda}\in \mathrm{Sz}(\mathbb{R})\Longleftrightarrow \mu _{1} \in \mathrm{Sz}(\mathbb{R})\).

Second, we claim that, given intervals \(I^{-}\subseteq I\), \(|I|=1\), and \(\varepsilon \in (0,1]\), the following implication holds

$$ \det \int _{I} \mathcal {H}(\tau ) d\tau - 1=\varepsilon \Rightarrow \det \int _{I^{-}} \mathcal {H}(\tau ) d\tau - |I^{-}|^{2}\lesssim \varepsilon , $$
(A.1)

for every non-negative Hamiltonian ℋ that satisfies \(\det \mathcal {H}=1\) a.e. on \(I\). Indeed, denote \(A=\int _{I^{-}} \mathcal {H}d\tau \) and \(B=\int _{I^{+}} \mathcal {H}d\tau \) where \(I=I^{-}\cup I^{+}\). Then, we get (see, e.g., (A-1) in [8]):

$$ \det A\ge |I^{-}|^{2}, \quad \det B\ge |I^{+}|^{2} $$

and

$$ \det (A+B)= 1+\varepsilon . $$

Minkowski inequality for determinants yields

$$ \det (A+B)\ge (\sqrt{\det A}+\sqrt{\det B})^{2}. $$

Denoting \(\sqrt{\det A}=x\) and \(\sqrt{\det B}=y\), we get

$$ x+y\le (1+\varepsilon )^{\frac {1}{2}}, \quad |I^{-}|+|I^{+}|=1, \quad |I^{-}|\le x, \quad |I^{+}|\le y. $$

That implies (draw the corresponding domains on the plane), that \(|I^{-}|\le x\le |I^{-}|+C\varepsilon \). Taking the square of the last bound yields the estimate on the right-hand side of (A.1).

Now, if \(\det \mathcal {H}=1\) a.e., the statement in (2.26) holds by combining these two claims. Indeed, suppose \(\mu \in \mathrm{Sz}(\mathbb{R}_{+})\) and we are given sequence \(\{\alpha _{n}\}\). Then, there is \(\lambda \) such that every interval \([\alpha _{n}, \alpha _{n+2}]\) is inside one of the intervals \([\lambda l, \lambda (l+2)]\) or \([\lambda (l-1),\lambda (l+1)]\) for some \(l\). Since the sum in (2.26) converges for \(\{\alpha _{l}\}=\{\lambda l\}\), we can apply (A.1) (with dilated and translated interval \(I\)) to get condition in the left-hand side of (2.26) satisfied for \(\{\alpha _{n}\}\). Conversely, if the sum in (2.26) converges for some \(\{\alpha _{n}\}\), then there is suitable \(\lambda \) such that each interval \([\lambda n, \lambda (n+2)]\) is covered by either \([\alpha _{l}, \alpha _{l+2}]\) or \([\alpha _{l-1}, \alpha _{l+1}]\) for some \(l\). Thus, applying (A.1) again, we get that the sum in (2.26) converges with \(\{\alpha _{n}\}=\{\lambda n\}\) and \(\mu \in \mathrm{Sz}(\mathbb{R}_{+})\). The case of general ℋ follows by making the change of variables in \(\tau \) and using an approximation argument. □

1.2 A.2 Free evolution for canonical systems and Dirac operators

Recall that \(\mathfrak {D}_{0}=\mathcal {D}_{\mathcal {H}_{0}}\). We now show that the free evolution for these operators is, in fact, equivalent to the shift on the real line and that relation is algebraic. To this end, we work in terms of Dirac operator and perform two elementary unitary transformations

$$ \widetilde {\mathfrak {D}}_{0}=-Z^{-1}\mathfrak {D}_{0} Z= \left ( \begin{smallmatrix} -i\partial _{\tau }& 0 \\ 0 & i\partial _{\tau}\end{smallmatrix} \right ), \quad Z=\tfrac{1}{\sqrt {2}} \left ( \begin{smallmatrix} i & -1 \\ 1 & -i\end{smallmatrix} \right ). $$

Here, \(\partial _{\tau}\) stands for the differentiation operator. Operator \(\widetilde {\mathfrak {D}}_{0}\), taken with suitable boundary condition at 0: \(f_{1}(0)=if_{2}(0)\), is self-adjoint on the same Hilbert space \(\left ( \begin{smallmatrix} f_{1} \\ f_{2}\end{smallmatrix} \right )\in L^{2}(\mathbb{R}_{+},\mathbb{C}^{2})\). If one further maps

$$ \left ( \begin{smallmatrix} f_{1} \\ f_{2}\end{smallmatrix} \right )\mapsto g(x)= \textstyle\begin{cases} f_{1}(x), &x>0, \\ if_{2}(-x), &x< 0,\end{cases} $$

then, \(\mathfrak {D}_{0}\) becomes unitary equivalent to \(-i\partial _{x}\) on \(L^{2}(\mathbb{R})\) with \(e^{t\partial _{x}}g=g(x+t)\), which is the standard shift operator.

1.3 A.3 A formula for exponential type

Lemma A.1

If entire function \(f\) has bounded type both in \(\mathbb{C}_{+}\) and \(\mathbb{C}_{-}\), then its exponential type can be computed by the formula

$$ \mathop{type}\nolimits f = \limsup _{y \to +\infty} \frac{\log \max (|f(iy)|, |f(-iy)|)}{y}. $$
(A.2)

Proof

Let us apply Theorem 2 in Lecture 16 of [60]. It says that for every entire function \(f\) of bounded type in \(\mathbb{C}_{+}\) and \(\mathbb{C}_{-}\) we have

$$\begin{aligned} \log |f(z)| &= \sigma _{+} y + o(|z|), \qquad y \ge 0, \\ \log |f(z)| &= \sigma _{-} y + o(|z|), \qquad y \le 0, \end{aligned}$$

outside of a set of disks \(\{z \in \mathbb{C}\colon |z - a_{j}| < r_{j}\}\) of finite view (the latter means that \(\sum _{j} \frac{r_{j}}{|a_{j}|} < \infty \)). Here \(\sigma _{\pm} \in \mathbb{R}\) and \(y = \mathop{\mathrm{Im}}z\). Take \(\varepsilon > 0\) and denote \(\sigma = \max (\sigma _{+}, -\sigma _{-})\). By the maximum principle for subharmonic functions, we have

$$ \log |f(z)| \le (\sigma + \varepsilon )|y| + o(|z|) $$

everywhere in ℂ as \(z \to \infty \). Therefore, we have \(\mathop{type}\nolimits f \le \sigma \). On the other hand, the set of disks of finite view cannot fill any half-axis, hence

$$ \sigma _{+} = \limsup _{y \to +\infty}\frac{\log |f(iy)|}{y}, \qquad - \sigma _{-} = \limsup _{y \to -\infty}\frac{\log |f(iy)|}{|y|}, $$

which proves the statement. □

1.4 A.4 Rotation matrices

The following result in the linear algebra has been used in the main text.

Lemma A.2

For every real \(2\times 2\) matrix \(A\) with non-negative determinant, there is a rotation matrix \(\Sigma _{\varphi }\) of the form

$$ \Sigma _{\varphi }= \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} , \qquad \varphi \in [0, 2\pi ), $$

such that \(\Sigma _{\varphi }A \ge 0\).

Proof

This is immediate from the proof of the polar decomposition given in [31], p. 276. □

1.5 A.5 Robinson’s theorem

In the main text, we used the following variation of a result by Robinson [70], which is based on ideas dating back to Ruelle’s work [72].

Lemma A.3

Suppose \(H\) is a Hilbert space, \(\mathcal {D}\) is a densely defined self-adjoint operator, and \(P_{\Delta}\) denotes the orthogonal projector for \(\mathcal {D}\) relative to a set \(\Delta \subseteq \mathbb{R}\). If \(A\) is a bounded operator on \(H\) and \(AP_{[-\Lambda ,\Lambda ]}\) is compact for some \(\Lambda \ge 0\), then

$$ \lim _{\mathbf {T}\to +\infty}\frac {1}{\mathbf {T}}\int _{0}^{\mathbf {T}} \|Ae^{it\mathcal {D}}P_{[-\Lambda ,\Lambda ]}\psi \|^{2}dt=\sum _{j}\|AP_{E_{j}}P_{[- \Lambda ,\Lambda ]}\psi \|^{2} $$

for every \(\psi \in H\), where \(P_{ E_{j}}\) denotes the orthogonal projection on the eigenspace that corresponds to eigenvalue \(E_{j}\) and the sum is over all eigenvalues \(\{E_{j}\}\) of \(\mathcal {D}\).

Proof

The proof is an application of Theorem 2 in [70] to operator \(\mathcal {D}P_{[-\Lambda ,\Lambda ]}\) with the perturbation taken as \(AP_{[-\Lambda ,\Lambda ]}\) where both \(\mathcal {D}P_{[-\Lambda ,\Lambda ]}\) and \(AP_{[-\Lambda ,\Lambda ]}\) are considered as operators acting on \(H\). □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessonov, R., Denisov, S. Szegő condition, scattering, and vibration of Krein strings. Invent. math. 234, 291–373 (2023). https://doi.org/10.1007/s00222-023-01201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-023-01201-9

Mathematics Subject Classification

Navigation