Skip to main content
Log in

Canonical measures on metric graphs and a Kazhdan’s theorem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We extend the notion of canonical measures to all (possibly non-compact) metric graphs. This will allow us to introduce a notion of “hyperbolic measures” on universal covers of metric graphs. Kazhdan’s theorem for Riemann surfaces describes the limiting behavior of canonical (Arakelov) measures on finite covers in relation to the hyperbolic measure. We will prove a generalized version of this theorem for metric graphs, allowing any infinite Galois cover to replace the universal cover. We will show all such limiting measures satisfy a version of Gauss–Bonnet formula which, using the theory of von Neumann dimensions, can be interpreted as a “trace formula”. In the special case where the infinite cover is the universal cover, we will provide explicit methods to compute the corresponding limiting (hyperbolic) measure. Our ideas are motivated by non-Archimedean analytic and tropical geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta. Res. Math. Sci. 2, Art. 7, 67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms II: tropical curves and metrized complexes. Algebra Number Theory 9(2), 267–315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J., Samet, I.: On the growth of L\(^2\)-invariants for sequences of lattices in Lie groups. Ann. Math. (2) 185(3), 711–790 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. An, Y., Baker, M., Kuperberg, G., Shokrieh, F.: Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem. Forum Math. Sigma 2, e24, 25 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abért, M., Csikvári, P., Frenkel, P.E., Kun, G.: Matchings in Benjamini–Schramm convergent graph sequences. Trans. Am. Math. Soc. 368(6), 4197–4218 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amini, O.: Equidistribution of Weierstrass points on curves over non-Archimedean fields (2014). arXiv:1412.0926

  7. Amini, O.: Logarithmic tree factorials (2016). arXiv:1611.02142

  8. André, Y.: Period mappings and differential equations. From \(\mathbb{C}\) to \(\mathbb{C}_p\), MSJ Memoirs, vol. 12. Mathematical Society of Japan, Tokyo (2003). (T.ohoku–Hokkaid.o lectures in arithmetic geometry, Withappendices by F. Kato and N. Tsuzuki)

    Google Scholar 

  9. Berkovich, V.G.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields. Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence, RI (1990)

    MATH  Google Scholar 

  10. Baker, M., Faber, X.: Metric properties of the tropical Abel–Jacobi map. J. Algebraic Comb. 33(3), 349–381 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bestvina, M., Feighn, M.: Hyperbolicity of the complex of free factors. Adv. Math. 256, 104–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biggs, N.: Algebraic potential theory on graphs. Bull. Lond. Math. Soc. 29(6), 641–682 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boucksom, S., Jonsson, M.: Tropical and non-Archimedean limits of degenerating families of volume forms. J. Éc. polytech. Math. 4, 87–139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baker, M., Norine, S.: Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. Math. 215(2), 766–788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baker, M., Rumely, R.: Harmonic analysis on metrized graphs. Can. J. Math. 59(2), 225–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Baker, M., Rumely, R.: Potential Theory and Dynamics on the Berkovich Projective Line. Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  17. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Baker, M., Shokrieh, F.: Chip-firing games, potential theory on graphs, and spanning trees. J. Comb. Theory Ser. A 120(1), 164–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Baik, H., Shokrieh, F., Wu, C.: Limits of canonical forms on towers of Riemann surfaces (2018). arXiv:1808.00477

  20. Chambert-Loir, A.: Heights and measures on analytic spaces, a survey of recent results, and some remarks. In: Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, vol. 384, pp. 1–50, Cambridge University Press, Cambridge (2011)

  21. Chinburg, T., Rumely, R.: The capacity pairing. J. Reine Angew. Math. 434, 1–44 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Culler, M., Vogtmann, K.: Moduli of graphs and automorphisms of free groups. Invent. Math. 84(1), 91–119 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Jong, R.: Faltings delta-invariant and semistable degeneration (2015). To appear in J. Differ. Geom. arXiv:1511.06567

  24. Dowdall, S., Kapovich, I., Leininger, C.J.: Dynamics on free-by-cyclic groups. Geom. Topol. 19(5), 2801–2899 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Carus Mathematical Monographs, vol. 22. Mathematical Association of America, Washington, DC (1984)

    MATH  Google Scholar 

  26. Flanders, H.: A new proof of R. Foster’s averaging formula in networks. Linear Algebra Appl. 8, 35–37 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Foster, R.M.: The average impedance of an electrical network. Reissner Anniversary Volume, Contributions to Applied Mechanics, pp. 333–340 (1948)

  28. Gu, X., Guo, R., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces II. J. Differ. Geom. 109(3), 431–466 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gerritzen, L., van der Put, M.: Schottky Groups and Mumfordcurves. Lecture Notes in Mathematics, vol. 817. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  30. Heinz, N.: Admissible metrics for line bundles on curves and abelian varieties over non- Archimedean local fields. Arch. Math. (Basel) 82(2), 128–139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Handel, M., Mosher, L.: The free splitting complex of a free group, I: hyperbolicity. Geom. Topol. 17(3), 1581–1672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kazhdan, D.: Arithmetic varieties and their fields ofquasi-definition. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 321–325 (1971)

  33. Kazhdan, D.: On arithmetic varieties. Lie groups and theirrepresentations (Proc. Summer School, Bolyai János Math. Soc., Budapest 1971), pp. 151–217 (1975)

  34. Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik 148(12), 497–508 (1847)

    Article  Google Scholar 

  35. Lück, W.: L\(^2\)-invariants: theory and applications to geometry and K-theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  36. Lepage, E.: Tempered fundamental group and metric graph of a Mumford curve. Publ. Res. Inst. Math. Sci. 46(4), 849–897 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

    Book  MATH  Google Scholar 

  38. Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98, 167–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lyons, T.: A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11(2), 393–402 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Magnus, W.: Residually finite groups. Bull. Am. Math. Soc. 75, 305–316 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mann, B.: Hyperbolicity of the cyclic splitting graph. Geom. Dedicata 173, 271–280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. McMullen, C.T.: Entropy on Riemann surfaces and the Jacobians of finite covers. Comment. Math. Helv. 88(4), 953–964 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. McMullen, C.T.: Entropy and the clique polynomial. J. Topol. 8(1), 184–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mumford, D.: Curves and Their Jacobians. The University of Michigan Press, Ann Arbor, MI (1975)

    MATH  Google Scholar 

  45. Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In: Curves and abelian varieties, Contemp. Math, vol. 465, pp. 203–230, American Mathematical Society, Providence, RI (2008)

  46. Neeman, A.: The distribution of Weierstrass points on a compact Riemann surface. Ann. Math. (2) 120(2), 317–328 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pansu, P.: Introduction to L\(^2\) Betti numbers. In: Riemannian geometry. (Waterloo, ON 1993), Fields Inst. Monogr. vol. 4, pp. 53–86, American Mathematical Society, Providence, RI (1996)

  48. Rhodes, J.A.: Sequences of metrics on compact Riemann surfaces. Duke Math. J. 72(3), 725–738 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shokrieh, F.: The monodromy pairing and discrete logarithm on the Jacobian of finite graphs. J. Math. Cryptol. 4(1), 43–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, S.: Admissible pairing on a curve. Invent. Math. 112(1), 171–193 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Matthew Baker and Curtis McMullen for helpful remarks and suggestions. We also thank Omid Amini, Matthew Baker, Robin de Jong, and the anonymous referee for valuable comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farbod Shokrieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokrieh, F., Wu, C. Canonical measures on metric graphs and a Kazhdan’s theorem. Invent. math. 215, 819–862 (2019). https://doi.org/10.1007/s00222-018-0838-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-018-0838-5

Mathematics Subject Classification

Navigation