Skip to main content
Log in

Attracting currents and equilibrium measures for quasi-attractors of \(\mathbb {P}^k\)

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let f be a holomorphic endomorphism of \(\mathbb {P}^k\) of degree d. For each quasi-attractor of f we construct a finite set of currents with attractive behaviors. To every such attracting current is associated an equilibrium measure which allows for a systematic ergodic theoretical approach in the study of quasi-attractors of \(\mathbb {P}^k\). As a consequence, we deduce that there exist at most countably many quasi-attractors, each one with topological entropy equal to a multiple of \(\log d\). We also show that the study of these analytic objects can initiate a bifurcation theory for attracting sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonifant, A., Dabija, M.: Self-maps of \({{\mathbb{P}}}^2\) with invariant elliptic curves. In: Earle, C.J., Harvey, W.J., Recillas-Pishmish, S. (eds.) Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001), Contemporary Mathematics, vol. 311, pp. 1–25. American Mathematical Society, Providence (2002)

  2. Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of \(\mathbb{C}^2\). IV. The measure of maximal entropy and laminar currents. Invent. Math. 112(1), 77–125 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonatti, C., Li, M., Yang, D.: On the existence of attractors. Trans. Am. Math. Soc. 365(3), 1369–1391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbb{C}^2\). III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. 294(3), 395–420 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buzzard, G.: Infinitely many periodic attractors for holomorphic maps of 2 variables. Ann. Math. (2) 145(2), 389–417 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series in Mathematics, vol. 38. American Mathematical Society, Providence (1978)

    Book  Google Scholar 

  7. Daurat, S.: On the size of attractors in \(\mathbb{P}^k\). Math. Z. 277(3–4), 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daurat, S.: Hyperbolic saddle measures and laminarity for holomorphic endomorphisms of \({\mathbb{P}}^2\). Indiana Univ. Math. J. (2016) (to appear)

  9. Demailly, J.-P.: Complex Analytic and Differential Geometry. www-fourier.ujf-grenoble.fr/~demailly/books.html (2012)

  10. Dinh, T.-C.: Attracting current and equilibrium measure for attractors on \({\mathbb{P}}^k\). J. Geom. Anal. 17(2), 227–244 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinh, T.-C., Nguyên, V.-A., Sibony, N.: Dynamics of horizontal-like maps in higher dimension. Adv. Math. 219(5), 1689–1721 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duval, J., Sibony, N.: Polynomial convexity, rational convexity, and currents. Duke Math. J. 79(2), 487–513 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinh, T.-C., Sibony, N.: Dynamique des applications d’allure polynomiale. J. Math. Pures Appl. (9) 82(4), 367–423 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dinh, T.-C., Sibony, N.: Geometry of currents, intersection theory and dynamics of horizontal-like maps. Ann. Inst. Fourier (Grenoble) 56(2), 423–457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dinh, T.-C., Sibony, N.: Super-potentials of positive closed currents, intersection theory and dynamics. Acta Math. 203(1), 1–82 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dinh, T.-C., Sibony, N.: Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. In: Gentili, G., Guenot, J., Patrizio, G. (eds.) Holomorphic Dynamical Systems. Lecture Notes in Mathematics, vol. 1998, pp. 165–294. Springer, Berlin (2010)

  17. de Thélin, H.: Sur la construction de mesures selles. Ann. Inst. Fourier (Grenoble) 56(2), 337–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Thélin, H.: Sur les exposants de Lyapounov des applications méromorphes. Invent. Math. 172(1), 89–116 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Daurat, S., Taflin, J.: Codimension one attracting sets of \({\mathbb{P}}^k({\mathbb{C}})\). Ergod. Theory Dyn. Syst. 38, 63–80 (2018)

    Article  MATH  Google Scholar 

  20. de Thélin, H., Nguyen, F.: Etude des mesures hyperboliques pour les applications meromorphes. arXiv:1509.07679 (2015)

  21. Dujardin, R.: Hénon-like mappings in \(\mathbb{C}^2\). Am. J. Math. 126(2), 439–472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dupont, C.: Large entropy measures for endomorphisms of \(\mathbb{CP}^k\). Isr. J. Math. 192(2), 505–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153. Springer, New York (1969)

    Google Scholar 

  24. Fornæss, J.-E., Sibony, N.: Complex dynamics in higher dimension. I. Astérisque 222(5), 201–231 (1994). (Complex analytic methods in dynamical systems (Rio de Janeiro, 1992))

    MathSciNet  MATH  Google Scholar 

  25. Fornæss, J.-E., Sibony, N.: Complex dynamics in higher dimension. II. In: Bloom, T., Catlin, D., D’Angelo, J.P., Siu, Y.-T (eds.) Modern Methods in Complex Analysis (Princeton, NJ, 1992). Annals of Mathematics Studies, vol. 137, pp. 135–182. Princeton University Press, Princeton (1995)

  26. Fornæss, J.-E., Sibony, N.: Oka’s inequality for currents and applications. Math. Ann. 301(3), 399–419 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fornæss, J.-E., Sibony, N.: Dynamics of \({{\mathbb{P}}}^2\) (examples). In: Lyubich, M., Milnor, J.W., Minsky, Y.N. (eds.) Laminations and Foliations in Dynamics, Geometry and Topology (Stony Brook, NY, 1998). Contemporary Mathematics, vol. 269, pp. 47–85. American Mathematical Society, Providence (2001)

  28. Fornæss, J.-E., Weickert, B.: Attractors in \({{\mathbb{P}}}^2\). In: Schneider, M., Siu, Y.-T. (eds.) Several Complex Variables (Berkeley, CA, 1995–1996). Mathematical Sciences Research Institute Publications, vol. 37, pp. 297–307. Cambridge University Press, Cambridge (1999)

  29. Gavosto, E.A.: Attracting basins in \({{\mathbb{P}}}^2\). J. Geom. Anal. 8(3), 433–440 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. (2) 49(3–4), 217–235 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Guedj, V.: Approximation of currents on complex manifolds. Math. Ann. 313(3), 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Henkin, G., Leiterer, J.: Andreotti–Grauert Theory by Integral Formulas. Progress in Mathematics, vol. 74. Birkhäuser Boston Inc, Boston (1988)

    Book  MATH  Google Scholar 

  33. Hurley, M.: Attractors: persistence, and density of their basins. Trans. Am. Math. Soc. 269(1), 247–271 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jonsson, M., Weickert, B.: A nonalgebraic attractor in \({\mathbb{P}}^2\). Proc. Am. Math. Soc. 128(10), 2999–3002 (2000)

    Article  MATH  Google Scholar 

  35. Matsumoto, K.: Pseudoconvex domains of general order and \(q\)-convex domains in the complex projective space. J. Math. Kyoto Univ. 33(3), 685–695 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pham, N.-M.: Lyapunov exponents and bifurcation current for polynomial-like maps. arXiv:math/0512557 (2005)

  37. Rong, F.: Non-algebraic attractors on \({{\mathbb{P}}}^k\). Discrete Contin. Dyn. Syst. 32(3), 977–989 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stawiska, M.: Holomorphic maps on \(\mathbb{C}{\mathbb{P}}^k\) with attracting hypersurfaces and pluricomplex Green functions for their repellers. Complex Var. Elliptic Equ. 51(7), 675–681 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Taflin, J.: Speed of convergence towards attracting sets for endomorphisms of \({\mathbb{P}}^k\). Indiana Univ. Math. J. 62, 33–44 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ueda, T.: Fatou sets in complex dynamics on projective spaces. J. Math. Soc. Jpn. 46(3), 545–555 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57(3), 285–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Taflin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taflin, J. Attracting currents and equilibrium measures for quasi-attractors of \(\mathbb {P}^k\). Invent. math. 213, 83–137 (2018). https://doi.org/10.1007/s00222-018-0786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-018-0786-0

Navigation