Skip to main content
Log in

A complete knot invariant from contact homology

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We construct an enhanced version of knot contact homology, and show that we can deduce from it the group ring of the knot group together with the peripheral subgroup. In particular, it completely determines a knot up to smooth isotopy. The enhancement consists of the (fully noncommutative) Legendrian contact homology associated to the union of the conormal torus of the knot and a disjoint cotangent fiber sphere, along with a product on a filtered part of this homology. As a corollary, we obtain a new, holomorphic-curve proof of a result of the third author that the Legendrian isotopy class of the conormal torus is a complete knot invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In fact, for the purposes of this paper and in particular the proof of Theorem 1.1, one could ignore orientations and work over \(\mathbb {Z}/2\) rather than \(\mathbb {Z}\). However, for the purposes of the general theory, we will work over \(\mathbb {Z}\) throughout.

References

  1. Aganagic, M., Ekholm, T., Ng, L., Vafa, C.: Topological strings, D-model, and knot contact homology. Adv. Theor. Math. Phys. 18(4), 827–956 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgeois, F., Ekholm, T., Eliashberg, Y.: Symplectic homology product via Legendrian surgery. Proc. Natl. Acad. Sci. U.S.A. 108(20), 8114–8121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgeois, F., Ekholm, T., Eliashberg, Y.: Effect of Legendrian surgery. Geom. Topol. 16(1), 301–389 (2012) (with an appendix by Sheel Ganatra and Maksim Maydanskiy)

  4. Cieliebak, K., Ekholm, T., Latschev, J.: Compactness for holomorphic curves with switching Lagrangian boundary conditions. J. Symplectic Geom. 8(3), 267–298 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cieliebak, K., Ekholm, T., Latschev, J., Ng, L.: Knot contact homology, string topology, and the cord algebra. J. Éc. Polytech. Math. 4, 661–780 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ekholm, T., Etnyre, J., Ng, L., Sullivan, M.: Filtrations on the knot contact homology of transverse knots. Math. Ann. 355(4), 1561–1591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekholm, T., Etnyre, J.B., Ng, L., Sullivan, M.G.: Knot contact homology. Geom. Topol. 17(2), 975–1112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekholm, T., Etnyre, J., Sullivan, M.: Non-isotopic Legendrian submanifolds in \(\mathbb{R}^{2n+1}\). J. Differ. Geom. 71(1), 85–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ekholm, T., Etnyre, J., Sullivan, M.: Orientations in Legendrian contact homology and exact Lagrangian immersions. Int. J. Math. 16(5), 453–532 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekholm, T., Etnyre, J., Sullivan, M.: Legendrian contact homology in \(P\times \mathbb{R}\). Trans. Am. Math. Soc. 359(7), 3301–3335 (2007) (electronic)

  11. Eliashberg, Y., Glvental, A., Hofer, H.: Introduction to symplectic field theory. In: Alon, N., Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds.) Visions in Mathematics. Modern Birkhauser Classics, pp. 560–673. Birkhauser, Basel (2010)

    Google Scholar 

  12. Ekholm, T., Honda, K., Kálmán, T.: Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS). arXiv:1212.1519

  13. Ekholm, T.: Rational symplectic field theory over \(\mathbb{Z}_2\) for exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS) 10(3), 641–704 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ekholm, T., Lekili, Y.: Duality between Lagrangian and Legendrian invariants. arXiv:1701.01284

  15. Gordon, C., Lidman, T.: Knot contact homology detects cabled, composite, and torus knots. Proc. Am. Math. Soc. (accepted). arXiv:1509.01642

  16. Gordon, C.M.A., Luecke, J.: Knots are determined by their complements. J. Am. Math. Soc. 2(2), 371–415 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Higman, G.: The units of group-rings. Proc. Lond. Math. Soc. 2(46), 231–248 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  18. Howie, J., Short, H.: The band-sum problem. J. Lond. Math. Soc. (2) 31(3), 571–576 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joyce, D.: A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra 23(1), 37–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kontsevich, M.: Symplectic geometry of homological algebra. Available at the author’s webpage (2009)

  21. Mishachev, K.: The \(N\)-copy of a topologically trivial Legendrian knot. J. Symplectic Geom. 1(4), 659–682 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nadler, D.: Wrapped microlocal sheaves on pairs of pants. arXiv:1604.00114

  23. Nadler, D.: Arboreal singularities. Geom. Topol. 21(2), 1231–1274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ng, L.: Framed knot contact homology. Duke Math. J. 141(2), 365–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ng, L.: Rational symplectic field theory for Legendrian knots. Invent. Math. 182(3), 451–512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ng, L.: Combinatorial knot contact homology and transverse knots. Adv. Math. 227(6), 2189–2219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ng, L.: A topological introduction to knot contact homology. In: Contact and Symplectic Topology, volume 26 of Bolyai Soc. Math. Stud., pp. 485–530. János Bolyai Math. Soc., Budapest (2014)

  28. Ng, L., Rutherford, D., Shende, V., Sivek, S., Zaslow, E.: Augmentations are sheaves. arXiv:1502.04939

  29. Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22(1), 233–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shende, V.: The conormal torus is a complete knot invariant. arXiv:1604.03520

  31. Sylvan, Z.: On partially wrapped Fukaya categories. arXiv:1604.02540

  32. Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math. (2) 87(1), 56–88 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

TE was supported by the Knut and Alice Wallenberg Foundation and the Swedish Research Council. LN was partially supported by NSF Grant DMS-1406371 and a Grant from the Simons Foundation (# 341289 to Lenhard Ng). VS was partially supported by NSF Grant DMS-1406871 and a Sloan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenhard Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekholm, T., Ng, L. & Shende, V. A complete knot invariant from contact homology. Invent. math. 211, 1149–1200 (2018). https://doi.org/10.1007/s00222-017-0761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-017-0761-1

Navigation