Skip to main content
Log in

Deformations of Galois representations and exceptional monodromy

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For any simple algebraic group G of exceptional type, we construct geometric \(\ell \)-adic Galois representations with algebraic monodromy group equal to G, in particular producing the first such examples in types \(\mathrm {F}_4\) and \(\mathrm {E}_6\). To do this, we extend to general reductive groups Ravi Ramakrishna’s techniques for lifting odd two-dimensional Galois representations to geometric \(\ell \)-adic representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The same thing happens in [11], which served as inspiration for [14].

  2. So what follows will literally apply except in type \(\mathrm {E}_6\); type \(\mathrm {E}_6\) turns out to require a minor, merely technical, modification, carried out in Sects. 9 and 10.

  3. In fact, substantially more so, because we would need not only a Galois extension with group \(G(\mathbb {F}_{\ell })\), but also to know that the associated representation \(\bar{\rho }\) satisfied the various technical hypotheses of the lifting theorem, e.g. ordinarity at \(\ell \).

  4. A sequel to the present paper will remove this restriction.

  5. Note that in the case \(G= \mathrm {G}_2\), the composition of the principal \(\mathrm {SL}_2\) with the quasi-minuscule representation \(\mathrm {G}_2 \hookrightarrow \mathrm {GL}_7\) remains irreducible, so that potential automorphy techniques could be applied in this case. This approach does not work for the other exceptional groups.

  6. In particular, taking \(\ell \not \mid n+1\) in type \(\mathrm {A}_n\) and \(\ell \ge 7\) in all other cases suffices.

  7. In some of the discussion that follows, the reader could replace \(\mu :G \rightarrow S\) by some other map to an \(\mathcal {O}\)-torus, whose kernel may be bigger than the derived group.

  8. By the universal property, conjugation of the universal lift by any element of \(\widehat{G}(R^{\square }_{\bar{\rho }})\) induces a morphism \(R_{\bar{\rho }}^\square \rightarrow R_{\bar{\rho }}^\square \).

  9. The logic of the present section only depends on knowing the right-hand-side of this equation; we mention the rest only for motivation.

  10. Recall from Lemma 4.11 that \(\mathfrak {l}_{\alpha }\) is the span of the \(\alpha \)-coroot vector.

  11. \(K_{\phi }\) and \(K_{\psi }\) are Galois over F because \(\phi \) and \(\psi \) are cocycles for \(\Gamma _{F}\).

  12. We remark that this enlargement of G is frequently technically convenient: for instance, it is the Tannakian group appearing when one studies the ‘geometric’ Satake correspondence over finite fields or number fields.

  13. Namely, for the torus \(T_1= (T \times \mathbf {G}_m)/\langle 2 \rho ^\vee (-1), -1 \rangle \),

    $$\begin{aligned} \left( \rho ^\vee , \frac{\beta }{2}\right) \in X_{\bullet }(T_1) \otimes _{\mathbb {Z}} \mathbb {Q}, \end{aligned}$$

    where \(\beta \) denotes a generator of \(X_{\bullet }(\mathbf {G}_m)\), in fact defines an element of \(X_{\bullet }(T_1)\).

  14. This lift is of course not unique; for any choice, \(2 \tilde{\rho }^\vee \) differs from \(2\rho ^\vee \), the usual co-character of \(G^{\mathrm {der}}\), by an element of \(X_{\bullet }(Z_G)\).

  15. I’m grateful to Florian Herzig for pointing out an apparently well-known minor error in [8], that \(H^1(\mathrm {SL}_2(\mathbb {F}_{\ell }), {{\mathrm{Sym}}}^{\ell -3}(\mathbb {F}_{\ell }^2))\) is one-dimensional. Our running assumption \(\ell > 4h-1\) will ensure this doesn’t interfere with any of our arguments.

  16. Magma automatically does this when it produces a Chevalley basis.

  17. The c[i] can be found in the tables of [4]. Within Magma, they can be derived, for our Lie algebra \(\mathfrak {g}\), by computing \(\mathrm {rd}:= \mathbf {RootDatum}(\mathfrak {g})\), then \(A:=\mathbf {SimpleCoroots}(\mathrm {rd})\) (an \(l \times l\) matrix), then by forming a vector c whose entries are twice the sum of the rows of \(A^{-1}\); the ith entry of c is the desired c[i]. But we double-check in each case the bracket properties for XYH, so how the c[i] are arrived at no longer matter.

  18. In Magma, when you call \(P:= \mathbf Centraliser (\mathfrak {g}, X)\) and then \(\mathbf ExtendBasis (P, \mathfrak {g})\), it hands you a basis of \(\mathfrak {g}\), in terms of the Chevalley basis, whose first l entries are a basis of P, and in fact already an H-eigenbasis.

  19. Intrinsically, \(\alpha _2\) and \(\alpha _4\) are those fixed under the outer automorphism of \(\mathrm {E}_6\). Our labeling convention is \(f(\alpha _i)=i\), where \(x[1], \ldots , x[6]\) is the ordered set of simple roots produced by Magma.

  20. Note that \(\Lambda \) is right-adjoint to \(\otimes _{\mathbb {F}_{\ell }} k\), and \(k \otimes _{\mathbb {F}_{\ell }} k\) is isomorphic to \(\prod _{\iota } k\) by the map \(x \otimes y \mapsto (\iota (x)y)_{\iota }\).

  21. The set \(\{r_{\alpha }\}_{\alpha \in \Delta (B, T)}\) does not depend on the choice of T.

  22. There are some elaborate Galois-theoretic means under hypotheses that are in practice too difficult to arrange; if the characteristic zero lifts are known to be automorphic, then suitable cases of the Ramanujan conjecture imply this non-splitness—this observation should suggest the difficulty of the problem. Current potential automorphy techniques would only help with the case \(G= \mathrm {G}_2\).

  23. In fact, it will even apply to appropriate unitary groups of any rank, using [2].

  24. Note that if we did not restrict to adjoint G, the above argument would show that \(\rho _{\lambda }(g)\) is a product \(z \cdot u\), where \(z \in Z_G\) and u is regular unipotent in G; but of course then by Jordan decomposition \(u \in G_{\rho }\) as well.

  25. In their notation, take \(S= \Sigma \) and \(T= \emptyset \).

  26. The groups \(I_{\widetilde{F}_{\tilde{w}}}\) and \(I_{\widetilde{F}_{\tilde{w}'}}\) are conjugate in \(\Gamma _{\Sigma \cup w}\), and the cocycle relation implies \(\phi (ghg^{-1})=0\) whenever \(\phi (h)=0\) and h acts trivially on M.

  27. Here recall that we write \(\mathfrak {t}^\vee = \mathfrak {l}_{\alpha ^\vee } \oplus \mathfrak {t}^\vee _{\alpha ^\vee }\) for the decomposition of \(\mathfrak {t}^\vee \) into the span \(\mathfrak {l}_{\alpha ^\vee }\) of the \(\alpha \)-coroot vector for \(G^\vee \) and \(\mathfrak {t}^\vee _{\alpha ^\vee }= \ker (\alpha )\).

References

  1. André, Y.: Pour une théorie inconditionnelle des motifs. Inst. Hautes Études Sci. Publ. Math. 83, 5–49 (1996)

    Article  Google Scholar 

  2. Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. (2) 179(2), 501–609 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel, A.: Automorphic \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977). Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, pp. 27–61 (1979)

  4. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968)

  5. Carter, R.W.: Finite groups of Lie type. Pure and Applied Mathematics (New York). Wiley, New York. Conjugacy classes and complex characters. A Wiley-Interscience Publication (1985)

  6. Clozel, L., Harris, M., Taylor, R.: Automorphy for some \(l\) Galois representations. Publ. Math. Inst. Hautes Études Sci. (108), 1–181 (2008) With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras

  7. Conrad, B.: Reductive group schemes. Autour des schémas en groupes. Panoramas et Synthèses [Panoramas and Syntheses], vol. 42–43. Société Mathématique de France, Paris, p. 458 (2014)

  8. Cline, E., Parshall, B., Scott, L.: Cohomology of finite groups of Lie type. I. Inst. Hautes Études Sci. Publ. Math. 45, 169–191 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dettweiler, M., Reiter, S.: Rigid local systems and motives of type \(G_2\). Compos. Math. 146(4), 929–963 (2010). With an appendix by Michael Dettweiler and Nicholas M. Katz

  10. Edixhoven, B.: Serre’s conjecture. Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 209–242. Springer, New York (1997)

  11. Frenkel, E., Gross, B.: A rigid irregular connection on the projective line. Ann. Math. (2) 170(3), 1469–1512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gee, T.: The Sato–Tate conjecture for modular forms of weight 3. Doc. Math. 14, 771–800 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Gross, B.H.: On the motive of \(G\) and the principal homomorphism \({\rm SL}_2\rightarrow \widehat{G}\). Asian J. Math. 1(1), 208–213 (1997)

    Article  MathSciNet  Google Scholar 

  14. Heinloth, J., Ngô, B.-C., Yun, Z.: Kloosterman sheaves for reductive groups. Ann. Math. (2) 177(1), 241–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harris, M., Shepherd-Barron, N., Taylor, R.: A family of Calabi–Yau varieties and potential automorphy. Ann. Math. (2) 171(2), 779–813 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katz, N.M.: Rigid Local Systems. Annals of Mathematics Studies, vol. 139. Princeton University Press, Princeton (1996)

    Book  Google Scholar 

  17. Kisin, M.: Modularity for some geometric Galois representations. \(L\)-functions and Galois representations. London Math. Soc. Lecture Note Ser., vol. 320. Cambridge University Press, Cambridge. With an appendix by Ofer Gabber, pp. 438–470 (2007)

  18. Kisin, M.: Modularity of 2-dimensional Galois representations. In: Jerison, D., Mazur, B., Mrowka, T., Schmid, W., Stanley, R., Yau, S.-T. (eds.) Current Developments in Mathematics, 2005, pp. 191–230. Int. Press, Somerville, MA (2007)

    Google Scholar 

  19. Kleiman, S.L.: Algebraic cycles and the Weil conjectures, pp. 359–386. Dix esposés sur la cohomologie des schémas. North-Holland, Amsterdam, pp. 359–386 (1968)

  20. Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math. 81, 973–1032 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. The LMFDB Collaboration: The l-functions and modular forms database. http://www.lmfdb.org. Online; Accessed 15 Feb 2015 (2013)

  22. Mazur, B.: Deforming Galois representations. Galois groups over \({ Q}\) (Berkeley, CA 1987), pp. 385–437. Springer, New York (1989)

  23. Nekovář, J.: On \(p\)-adic height pairings. Séminaire de Théorie des Nombres, Paris, 1990–91. Progr. Math., vol. 108. Birkhäuser Boston, Boston, MA, pp. 127–202 (1993)

  24. Patrikis, S.: Lifting symplectic Galois representations. Harvard undergraduate thesis (2006)

  25. Ramakrishna, R.: Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur. Ann. Math. (2) 156(1), 115–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ribet, K.A.: On \(l\)-adic representations attached to modular forms. II. Glasg. Math. J. 27, 185–194 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seitz, G.M.: Maximal subgroups of exceptional algebraic groups. Mem. Am. Math. Soc. 90(441), iv+197 (1991)

    MathSciNet  MATH  Google Scholar 

  29. Serre, J.-P.: Propriétés conjecturales des groupes de Galois motiviques et des représentations \(l\)-adiques. Motives (Seattle, WA, 1991). Proc. Sympos. Pure Math., vol. 55. Amer. Math. Soc., Providence, RI, pp. 377–400 (1994)

  30. Serre, J.-P.: Sur la semi-simplicité des produits tensoriels de représentations de groupes. Invent. Math. 116(1–3), 513–530 (1994)

    Article  MathSciNet  Google Scholar 

  31. Serre, J.-P.: Exemples de plongements des groupes \({\rm PSL}_2({ F}_p)\) dans des groupes de Lie simples. Invent. Math. 124(1–3), 525–562 (1996)

    Article  MathSciNet  Google Scholar 

  32. Springer, T.A., Steinberg, R.: Conjugacy classes. Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69). Lecture Notes in Mathematics, vol. 131, pp. 167–266. Springer, Berlin (1970)

  33. Saxl, J., Seitz, G.M.: Subgroups of algebraic groups containing regular unipotent elements. J. Lond. Math. Soc. (2) 55(2), 370–386 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Steinberg, R.: Lectures on Chevalley groups. Yale University, New Haven, Conn., Notes prepared by John Faulkner and Robert Wilson (1968)

  35. Skinner, C.M., Wiles, A.J.: Base change and a problem of Serre. Duke Math. J. 107(1), 15–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tilouine, J.: Deformations of Galois representations and Hecke algebras. Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad; by Narosa Publishing House, New Delhi (1996)

  37. Weston, T.: Unobstructed modular deformation problems. Am. J. Math. 126(6), 1237–1252 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wiles, A.: On ordinary \(\lambda \)-adic representations associated to modular forms. Invent. Math. 94(3), 529–573 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yun, Z.: Motives with exceptional Galois groups and the inverse Galois problem. Invent. Math. 196(2), 267–337 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Patrikis.

Additional information

This paper has a long history, and it gives me great pleasure to extend thanks both old and new. In 2006 with Richard Taylor’s guidance I proved a version of Ramakrishna’s lifting theorem for symplectic groups, as my Harvard undergraduate thesis. Without Richard’s encouragement and singular generosity, I would likely not have continued studying mathematics, much less been equipped to write the present paper; I am enormously grateful to him. At the time Frank Calegari and Brian Conrad both read and helpfully commented on the thesis, and I thank them as well. Moving toward the present day, I am grateful to Dick Gross, from whom I learned an appreciation of the principal \(\mathrm {SL}_2\), which turned out to be crucial for this paper; to Shekhar Khare, for his comments both on this paper and on other aspects of Ramakrishna’s work; to Florian Herzig for pointing out an error in [8]; and to the anonymous referee for a careful reading of an earlier version. Finally, I am greatly indebted to Rajender Adibhatla, who encouraged me to revise [24] for publication; this revision (superseded by the present paper) spurred me to revisit Ramakrishna’s methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrikis, S. Deformations of Galois representations and exceptional monodromy. Invent. math. 205, 269–336 (2016). https://doi.org/10.1007/s00222-015-0635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0635-3

Navigation