Skip to main content
Log in

Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study finite-dimensional representations of the Kauffman bracket skein algebra of a surface S. In particular, we construct invariants of such irreducible representations when the underlying parameter \(q={{\mathrm {e}}}^{2\pi {{\mathrm {i}}}\hbar }\) is a root of unity. The main one of these invariants is a point in the character variety consisting of group homomorphisms from the fundamental group \(\pi _1(S)\) to \({{\mathrm {SL}}}_2(\mathbb {C})\), or in a twisted version of this character variety. The proof relies on certain miraculous cancellations that occur for the quantum trace homomorphism constructed by the authors. These miraculous cancellations also play a fundamental role in subsequent work of the authors, where novel examples of representations of the skein algebra are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. However, see [20] for an earlier occurrence, as well as [22] for a related but different context.

References

  1. Barrett, J.W.: Skein spaces and spin structures. Math. Proc. Camb. Philos. Soc. 126, 267–275 (1999)

  2. Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Topological quantum field theories derived from the Kauffman bracket. Topology 34, 883–927 (1995)

  3. Bonahon, F., Liu, X.: Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geom. Topol. 11, 889–938 (2007)

  4. Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in \(\text{ SL }_2({\mathbb{C}})\). Geom. Topol. 15, 1569–1615 (2011)

  5. Bonahon, F., Wong, H.: Kauffman brackets, character varieties and triangulations of surfaces. In: Li, W., Bartolini, L., Johnson, J., Luo, F., Myers, R., Rubinstein, J.H. (eds.) Topology and Geometry in Dimension Three: Triangulations, Invariants, and Geometric Structures, Contemporary Mathematics 560. American Math. Society, Providence (2011)

  6. Bonahon, F., Wong, H.: Representations of the Kauffman bracket skein algebra II: punctured surfaces. arXiv:1206.1639 (submitted for publication)

  7. Bonahon, F., Wong, H.: Representations of the Kauffman bracket skein algebra III: closed surfaces and naturality. arXiv:1505.01522 (submitted for publication)

  8. Bonahon, F., Wong, H.: The Witten–Reshetikhin–Turaev representation of the Kauffman bracket skein algebra. arXiv:1309.0921 (submitted for publication)

  9. Bullock, D.: Estimating a skein module with \(\text{ SL }_2({\mathbb{C}})\) characters. Proc. Am. Math. Soc. 125, 1835–1839 (1997)

  10. Bullock, D.: Rings of \(\text{ SL }_2({\mathbb{C}})\)-characters and the Kauffman bracket skein module. Comment. Math. Helv. 72, 521–542 (1997)

  11. Bullock, D.: A finite set of generators for the Kauffman bracket skein algebra. Math. Z. 231, 91–101 (1999)

  12. Bullock, D., Frohman, C., Kania-Bartoszyńska, J.: Understanding the Kauffman bracket skein module. J. Knot Theory Ramif. 8, 265–277 (1999)

  13. Bullock, D., Frohman, C., Kania-Bartoszyńska, J.: The Kauffman bracket skein as an algebra of observables. Proc. Am. Math. Soc. 130, 2479–2485 (2002)

  14. Bullock, D., Przytycki, J.H.: Multiplicative structure of Kauffman bracket skein module quantizations. Proc. Am. Math. Soc. 128, 923–931 (2000)

  15. Carter, S.J., Flath, D.E., Saito, M.: The classical and quantum \(6j\)-symbols. Mathematical Notes 43. Princeton University Press, Princeton (1995)

  16. Chekhov, L.O., Fock, V.V.: Quantum Teichmüller spaces. Theor. Math. Phys. 120, 1245–1259 (1999)

  17. Chekhov, L.O., Fock, V.V.: Observables in 3D gravity and geodesic algebras. Quantum groups and integrable systems (Prague, 2000). Czechoslovak J. Phys. 50, 1201–1208 (2000)

  18. Fock, V.V.: Dual Teichmüller spaces (1997). arXiv:Math/dg-a/9702018 (unpublished preprint)

  19. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. 42, 865–930 (2009)

  20. Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352, 4877–4888 (2000)

  21. Goldman, W.M.: Topological components of spaces of representations. Invent. Math. 93, 557–607 (1988)

  22. Havlíček, M., Pošta, S.: On the classification of irreducible finite-dimensional representations of \(U^{\prime }_q({\rm {so}}_3)\) algebra. J. Math. Phys. 42, 472–500 (2001)

  23. Helling, H.: Diskrete Untergruppen von \(\text{ SL }_2({\mathbb{R}})\). Invent. Math. 17, 217–229 (1972)

  24. Kashaev, R.: Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43, 105–115 (1998)

  25. Kassel, C.: Quantum groups. Graduate texts in mathematics, vol. 155. Springer, New York (1995)

  26. Lê, T.T.Q.: On Kauffman bracket skein modules at root of unity. Algebr. Geom. Topol. 15, 1093–1117 (2015)

  27. Lickorish, W.B.R.: An introduction to knot theory. Graduate texts in mathematics, vol. 175. Springer, New York (1997)

  28. Lickorish, W.B.R.: Quantum invariants of \(3\)-manifolds. Handbook of geometric topology, pp. 707–734. North-Holland, Amsterdam (2002)

  29. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 34, 3rd edn. Springer, New York (1994)

  30. Przytycki, J.H., Sikora, A.S.: On skein algebras and \(\text{ SL }({\mathbb{C}})\)-character varieties. Topology 39, 115–148 (2000)

  31. Reshetikhin, N.Y., Turaev, V.G.: Invariants of \(3\)-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

  32. Roberts, J.: Irreducibility of some quantum representations of mapping class groups, Knots in Hellas’98, vol. 3 (Delphi). J. Knot Theory Ramif. 10, 763–767 (2001)

  33. Turaev, V.G.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. École Norm. Sup. 24, 635–704 (1991)

  34. Turaev, V.G.: Quantum invariants of knots and \(3\)-manifolds. de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter & Co., Berlin (1994)

  35. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

Download references

Acknowledgments

The authors are grateful to the referees for several useful suggestions. See in particular Remark 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Bonahon.

Additional information

This research was partially supported by Grants DMS-0604866, DMS-1105402 and DMS-1105692 from the National Science Foundation, and by a mentoring grant from the Association for Women in Mathematics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonahon, F., Wong, H. Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations. Invent. math. 204, 195–243 (2016). https://doi.org/10.1007/s00222-015-0611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0611-y

Mathematics Subject Classification

Navigation