Skip to main content
Log in

Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For the \(d\)-dimensional incompressible Euler equation, the standard energy method gives local wellposedness for initial velocity in Sobolev space \(H^s(\mathbb R^d)\), \(s>s_c:=d/2+1\). The borderline case \(s=s_c\) was a folklore open problem. In this paper we consider the physical dimension \(d=2\) and show that if we perturb any given smooth initial data in \(H^{s_c}\) norm, then the corresponding solution can have infinite \(H^{s_c}\) norm instantaneously at \(t>0\). In a companion paper [1] we settle the 3D and more general cases. The constructed solutions are unique and even \(C^{\infty }\)-smooth in some cases. To prove these results we introduce a new strategy: large Lagrangian deformation induces critical norm inflation. As an application we also settle several closely related open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The \(L^{\infty }\) end-point Kato-Ponce inequality (conjectured in [14]) and several new Kato-Ponce type inequalities are proved in recent [2].

  2. Counter examples for the case \(s<d/p+1\) was also considered therein.

  3. Similar results also hold for vorticity functions which are odd in \(x_1\), or odd in both \(x_1\) and \(x_2\).

  4. Actually it is easy to show that \(u\) is log-Lipschitz.

  5. In the actual perturbation argument, we need to divide it by a suitable power of \(\Vert D \phi \Vert _{\infty }\).

  6. Note that the perturbation \(\beta (x)\) therein can be chosen to be odd in \(x_1\) and \(x_2\).

  7. One needs to inductively shrink the \(\delta _i\) further (so that Lemma 6.5 can be applied) and re-choose the profiles \(h_j\) if necessary.

References

  1. Bourgain, J., Li, D.: Strong ill-posedness of the 3D incomressible Euler equation in borderline spaces. Preprint

  2. Bourgain, J., Li, D.: On an endpoint Kato-Ponce inequality. Differ Integral Equ 27(11/12), 1037–1072 (2014)

    MathSciNet  Google Scholar 

  3. Bardos, C., Titi, E.: Loss of smoothness and energy conserving rough weak solutions for the \(3d\) Euler equations. Discret. Contin. Dyn. Syst. Ser. S 3(2), 185–197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Comm. Math. Phys. 94, 61–66 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourguignon, J.P., Brezis, H.: Remarks on the Euler equation. J. Func. Anal. 15, 341–363 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chemin, J.-Y.: Perfect incompressible fluids. Clarendon press, Oxford (1998)

    MATH  Google Scholar 

  7. Chae, D.: Local existence and blow-up criterion for the Euler equations in the Besov spaces. Asymptot. Anal. 38(3–4), 339–358 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Amer. Math. Soc. N.S. 44(4), 603–621 (2007).

  9. Chae, D., Wu, J.: Logarithmically regularized inviscid models in the borderline Sobolev spaces. J. Math. Phys. 53(11), 115601 (2012)

  10. Cheskidov, A., Shvydkoy, R.: Ill-posedness of the basic equations of fluid dynamics in Besov spaces. Proc. Amer. Math. Soc. 138(3), 1059–1067 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dong, H., Li, D.: Global \(\dot{H}^1 \cap \dot{H}^{-1}\) solutions to a logarithmically regularized 2D Euler equation, J. Math. Fluid Mech., in press, arXiv:1210.0605 [math.AP] 2 Oct 2012

  12. Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(2), 102–163 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. DiPerna, R., Majda, A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108(4), 667–689 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grafakos, L., Maldonado, D., Naibo, V.: A remark on an end-point Kato-Ponce inequality. Differ. Integral Equ. 27(5–6), 415–424 (2014)

    MathSciNet  Google Scholar 

  15. Gunther, N., On the motion of fluid in a moving container, Izvestia Akad. Nauk USSR, Ser. Fiz. Mat., vol. 20, 1927, pp. 1323–1348, 1503–1532; vol. 21, 1927, pp. 521–526, 735–756; vol. 22, 1928, pp. 9–30

  16. Himonas, A.A., Misiołek, G.: Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Comm. Math. Phys. 296(1), 285–301 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Inci, H.: On the well-posedness of the incompressible Euler equation. arXiv: 1301.5997

  18. Kato, T.: Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^3\). J. Func. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  19. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975)

    Article  MATH  Google Scholar 

  20. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lichtenstein, L.: Üer einige Existenzprobleme der Hydrodynamik homogenerun-zusammendrück barer, reibungsloser Flüßbigkeiten und die Helmgoltzschen Wirbelsatze, Math. Z., vol. 23, 1925, pp. 89–154; vol. 26, 1927, pp. 196–323; vol. 28, 1928, pp. 387–415; vol. 32, 1930, pp. 608–725

  22. Lions, P.L.: Mathematical topics in fluid mechanics. Volume 1. Incompressible models’. Oxford lecture series in mathematics and its applications. The Clarendon Press, Oxford University Press, New York, (1996)

  23. Majda, A., Bertozzi, A.: Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  24. Misiołek, G., Yoneda, T.: Ill-posedness examples for the quasi-geostrophic and the Euler equations. Analysis, geometry and quantum field theory, 251–258, Contemp. Math. 584, Am. Math. Soc., Providence, RI, (2012)

  25. Pak, H.C., Park, Y.J.: Existence of solution for the Euler equations in a critical Besov space \(B^1_{\infty,1}(\mathbb{R}^d)\). Comm. Part. Differ. Equ. 29(7–8), 1149–1166 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Takada, R.: Counterexamples of commutator estimates in the Besov and the Triebel-Lizorkin spaces related to the Euler equations. SIAM J. Math. Anal. 42(6), 2473–2483 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vishik, M.: Hydrodynamics in Besov spaces. Arch. Rat. Mech. Anal. 145, 197–214 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vishik, M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. (4) 32(6), 769–812 (1999)

    MATH  MathSciNet  Google Scholar 

  29. Wolibner, W.: Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1), 698–726 (1933)

    Article  MathSciNet  Google Scholar 

  30. Yudovich, V.: Nonstationary flow of an ideal incompressible liquid. Zh. Vych. Mat. 3, 1032–1066 (1963)

    MATH  Google Scholar 

  31. Yudovich, V.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2, 27–38 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for very helpful suggestions. J. Bourgain was supported in part by NSF No. 1301619. D. Li was supported in part by NSF under agreement No. DMS-1128155. D. Li was also supported by an Nserc discovery grant. The first author thanks the UC Berkeley math department, where part of the work was done, for its hospitality. The second author thanks the Institute for Advanced Study for its hospitality and providing excellent work conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgain, J., Li, D. Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. math. 201, 97–157 (2015). https://doi.org/10.1007/s00222-014-0548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0548-6

Navigation