Skip to main content
Log in

Dimensions of irreducible modules over W-algebras and Goldie ranks

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The main goal of this paper is to compute two related numerical invariants of a primitive ideal in the universal enveloping algebra of a semisimple Lie algebra. The first one, very classical, is the Goldie rank of an ideal. The second one is the dimension of an irreducible module corresponding to this ideal over an appropriate finite W-algebra. We concentrate on the integral central character case. We prove, modulo a conjecture, that in this case the two are equal. Our conjecture asserts that there is a one-dimensional module over the W-algebra with certain additional properties. The conjecture is proved for the classical types. Also, modulo the same conjecture, we compute certain scale factors introduced by Joseph, this allows to compute the Goldie ranks of the algebras of locally finite endomorphisms of simples in the BGG category \(\mathcal {O}\). This completes a program of computing Goldie ranks proposed by Joseph in the 80’s (for integral central characters and modulo our conjecture). We also provide an essentially Kazhdan–Lusztig type formula for computing the characters of the irreducibles in the Brundan–Goodwin–Kleshchev category \(\mathcal {O}\) for a W-algebra again under the assumption that the central character is integral. In particular, this allows to compute the dimensions of the finite dimensional irreducible modules. The formula is based on a certain functor from an appropriate parabolic category \(\mathcal {O}\) to the W-algebra category \(\mathcal {O}\). This functor can be regarded as a generalization of functors previously constructed by Soergel and by Brundan-Kleshchev. We prove a number of properties of this functor including the quotient property and the double centralizer property. We develop several side topics related to our generalized Soergel functor. For example, we discuss its analog for the category of Harish–Chandra modules. We also discuss generalizations to the case of categories \(\mathcal {O}\) over Dixmier algebras. The most interesting example of this situation comes from the theory of quantum groups: we prove that an algebra that is a mild quotient of Luszitg’s form of a quantum group at a root of unity is a Dixmier algebra. For this we check that the quantum Frobenius epimorphism splits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In a recent preprint of Premet, [44], he proved that any W-algebra admits an \(A\)-stable 1-dimensional representation, but the central character is generally not integral. For example, [33] implies that, in the case of the three exceptional orbits, there are no \(A\)-stable finite dimensional representations with integral central character, so Premet’s representations automatically have non-integral central characters in these cases.

  2. The attribution to Premet is made because of his beautiful result saying that this scale factor is always integral. The first version of our proof below used that result. In fact—as was communicated to the author by Premet—one does not need that in the proof, it is enough to use the fact that the scale factor is bigger or equal than 1, which was established by the author. It is pleasant when somebody else understands your work better than you do...

  3. These are close to so called birationally rigid orbits.

  4. As I learned from Jeffrey Adams there is only one weakly rigid orbit, where this is not true: it appears in type \(E_8\).

Abbreviations

\(\mathcal {A}^{opp}\) :

The opposite algebra of \(\mathcal {A}\)

\(\widehat{\otimes }\) :

The completed tensor product of complete topological vector spaces/ modules

\((a_1,\ldots ,a_k)\) :

The two-sided ideal in an associative algebra generated by elements \(a_1,\ldots ,a_k\)

\(A^{\wedge _\chi }\) :

The completion of a commutative (or “almost commutative”) algebra \(A\) with respect to the maximal ideal of a point \(\chi \in \mathrm{Spec }(A)\)

\(\mathrm{Ann }_\mathcal {A}(\mathcal {M})\) :

The annihilator of an \(\mathcal {A}\)-module \(\mathcal {M}\) in an algebra \(\mathcal {A}\)

\(D(X)\) :

The algebra of differential operators on a smooth variety \(X\)

\(G^\circ \) :

The connected component of unit in an algebraic group \(G\)

\((G,G)\) :

The derived subgroup of a group \(G\)

\(G_x\) :

The stabilizer of \(x\) in \(G\)

\(\mathrm{Grk }(\mathcal {A})\) :

The Goldie rank of a prime Noetherian algebra \(\mathcal {A}\)

\(\mathrm{gr }\mathcal {A}\) :

The associated graded vector space of a filtered vector space \(\mathcal {A}\)

\(R_\hbar (\mathcal {A})\) :

\(:=\bigoplus _{i\in \mathbb {Z}}\hbar ^i \mathrm{F }_i\mathcal {A}\): the Rees \({\mathbb {K}}[\hbar ]\)-module of a filtered vector space \(\mathcal {A}\)

\(S(V)\) :

The symmetric algebra of a vector space \(V\)

\(\mathfrak {X}(H)\) :

The group of characters of an algebraic group \(H\)

References

  1. Antonyan, L.V.: On the classification of homogeneous elements of \({\mathbb{Z}}_2\)-graded semisimple Lie algebras. Vestn. Mosk. Univ., Ser. 1, 29–34 (1982, in Russian) [English translation. Mosc. Univ. Math. Bull. 37, 36–43 (1982)]

  2. Barbasch, D., Vogan, D.: Unipotent representations. Ann. Math. 121, 41–110 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernstein, J., Gelfand, S.: Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Compositio Math. 41(2), 245–285 (1980)

    MATH  MathSciNet  Google Scholar 

  4. Bezrukavnikov, R., Finkelberg, M., Ostrik, V.: On tensor categories attached to cells in affine Weyl groups III. Israel J. Math. 170, 207–234 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bezrukavnikov, R., Losev, I.: Etingof conjecture for quantized quiver varieties. arXiv:1309.1716

  6. Bezrukavnikov, R., Mirkovic, I.: Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolution. Ann. Math. 178(3), 835–919 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borho, W., Gabriel, P., Rentschler, R.: Primideale in Einhüllenden auflösbarer Lie-Algebren. In: Lecture Notes in Mathematics, vol 357. Springer, Berlin (1973)

  8. Borho, W., Kraft, H.: Über die Gelfand–Kirillov-dimension. Math. Ann. 220, 1–24 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brundan, J.: Moeglin’s theorem and Goldie rank polynomials in Cartan type A. Compos. Math. 147(6), 1741–1771 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brown, J., Brundan, J., Goodwin, S.: Principal W-algebras for \(\text{ GL }(m|n)\). Alg. Numb. Theory 7, 1849–1882 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brundan, J., Goodwin, S., Kleshchev, A.: Highest weight theory for finite \(W\)-algebras. Int. math. Res. Not. 2008(15), 1–53 (2008). Art ID rnn05

  12. Brundan, J., Kleshchev, A.: Representations of shifted Yangians and finite W-algebras, vol. 196, no. 918. Memoirs of the American Mathematical Society (2008)

  13. Brundan, J., Kleshchev, A.: Schur–Weyl duality for higher levels. Selecta Math. 14, 1–57 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chriss, N., Ginzburg, V.: Representation theory and complex geometry. Birkhäuser, Basel (1997)

  15. Collingwood, D., McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras. Chapman and Hall, London (1993)

    MATH  Google Scholar 

  16. Dixmier, J.: Enveloping Algebras. AMS, Amsterdam (1977)

  17. Ginzburg, V.: Harish–Chandra bimodules for quantized Slodowy slices. Repres. Theory 13, 236–271 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \({\cal O}\) for rational Cherednik algebras. Invent. Math. 154, 617–651 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gordon, I., Losev, I.: On category \({\cal O}\) for cyclotomic rational Cherednik algebras. J. Eur. Math. Soc. 16, 1017–1079 (2014). arXiv:1109.2315

  20. Jantzen, J.C.: Einhüllende Algebren halbeinfacher Lie-Algebren. Ergebnisse der Math., vol. 3. Springer, New York (1983)

  21. Joseph, A.: Kostant’s problem, Goldie rank and the Gelfand–Kirillov conjecture. Invent. Math. 56(3), 191–213 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra. I. J. Algebra 65, 269–283 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra. II. J. Algebra 65, 284–306 (1980)

    Article  Google Scholar 

  24. Joseph, A.: Primitive ideals in enveloping algebras. In: Proceedings of the International Congress of Mathematicians (1983)

  25. Joseph, A.: On the cyclicity of vectors associated with Duflo involutions. In: Lecture Notes in Mathematics, vol. 1243, pp. 144–188. Springer, Berlin (1987)

  26. Joseph, A.: On the associated variety of a primitive ideal. J. Algebra 93, 509–523 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Joseph, A.: A sum rule for the scale factors in the Goldie rank polynomials. J. Algebra 118, 276–311 (1988) [Addendum. J. Algebra 118, 312–321 (1988)]

  28. Losev, I.: Quantized symplectic actions and \(W\)-algebras. J. Am. Math. Soc 23, 34–59 (2010)

    Article  MathSciNet  Google Scholar 

  29. Losev, I.: Finite dimensional representations of W-algebras. Duke Math. J. 159(1), 99–143 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Losev, I.: On the structure of the category \({\cal O}\) for W-algebras. Séminaires et Congrès 24, 351–368 (2012)

    MathSciNet  Google Scholar 

  31. Losev, I.: Parabolic induction and one-dimensional representations of \(W\)-algebras. Adv. Math. 226(6), 4841–4883 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Losev, I.: Primitive ideals in W-algebras of type A. J. Algebra 359, 80–88 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Losev, I., Ostrik, V.: Classification of finite dimensional irreducible modules over W-algebras. Compos. Math. 150(6), 1024–1076 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lusztig, G.: Characters of reductive groups over a finite field. In: Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton (1984)

  35. Lusztig, G.: Leading coefficients of character values of Hecke algebras. In: Proc. Symp. Pure Math., vol. 47(2), pp. 235–262. Am. Math.Soc., Amsterdam (1987)

  36. Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicata 35, 89–114 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. Lond. Math. Soc. (2), 19, 41–52 (1979)

  38. McGovern, W.: Completely Prime Maximal Ideals and Quantization, p. 519. Mem. Amer. Math. Soc., USA (1994)

  39. Moeglin, C.: Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes II. Math. Scand. 63, 5–35 (1988)

    MATH  MathSciNet  Google Scholar 

  40. Premet, A.: Irreducible representations of Lie algebras of reductive groups and the Kac–Weisfeiler conjecture. Invent. Math. 121, 79–117 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  41. Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170, 1–55 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Premet, A.: Enveloping algebras of Slodowy slices and the Joseph ideal. J. Eur. Math. Soc. 9(3), 487–543 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Premet, A.: Enveloping algebras of Slodowy slices and Goldie rank. Transform. Groups 16(3), 857–888 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Premet, A.: Multiplicity-free primitive ideals associated with rigid nilpotent orbits. Transform. Groups 19(2), 569–641 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  45. Soergel, W.: Kategorie \(\cal O\), perverse Garben und Moduln den Koinvarianten zur Weyl-grouppe. J. Am. Math. Soc. 3, 421–445 (1990)

    MATH  MathSciNet  Google Scholar 

  46. Stroppel, C.: Der Kombinatorikfunktor \(\mathbb{V}\): Graduierte Kategorie \(\cal O\), Hauptserien und primitive Ideale. Dissertation Universität Freiburg i. Br. (2001)

  47. Stroppel, C.: Category \(\cal O\): quivers and endomorphisms of projectives. Repres. Theory 7, 322–345 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Warfield, R.B.: Prime ideals in ring extensions. J. Lond. Math. Soc. 28, 453–460 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhao, L.: Finite W-superalgebras for queer Lie algebras. J. Pure Appl. Algebra 218(7), 1184–1194 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank J. Adams, R. Bezrukavnikov, J. Brundan, I. Gordon, A. Joseph, G. Lusztig, V. Ostrik, A. Premet, C. Stroppel, D. Vogan and W. Wang for stimulating discussions related to various parts of this paper. Also I would like to thank the referee for many useful comments that allowed me to improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Losev.

Additional information

Dedication to Tony Joseph, on his 70th birthday.

Supported by the NSF grants DMS-0900907, DMS-1161584.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losev, I. Dimensions of irreducible modules over W-algebras and Goldie ranks. Invent. math. 200, 849–923 (2015). https://doi.org/10.1007/s00222-014-0541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0541-0

Mathematics Subject Classification

Navigation