Skip to main content
Log in

Leveling up: a long-range olivary projection to the medial geniculate without collaterals to the central nucleus of the inferior colliculus in rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The medial nucleus of the trapezoid body (MNTB) is one of the monaural cell groups situated within the superior olivary complex (SOC), a constellation of brainstem nuclei with numerous roles in hearing. Principal MNTB neurons are glycinergic and express the calcium-binding protein, calbindin (CB). The MNTB receives its main glutamatergic, excitatory input from the contralateral cochlear nucleus via the calyx of Held and converts this into glycinergic inhibition directed toward nuclei in the SOC and the ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL). Through this inhibition, the MNTB plays essential roles in localization of sound sources and encoding spectral and temporal features of sound. In rats, very few MNTB neurons project to the inferior colliculus. However, our recent study of SOC projections to the auditory thalamus revealed a substantial number of retrogradely labeled MNTB neurons. This observation led us to examine whether the rat MNTB provides a long-range projection to the medial geniculate body (MGB). We examined this possible projection using retrograde and anterograde tract tracing and immunohistochemistry for CB and the glycine receptor. Our results demonstrate a significant projection to the MGB from the ipsilateral MNTB that does not involve a collateral projection to the inferior colliculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

 + :

Positive

BIC:

Brachium of the inferior colliculus

CB:

Calbindin

CN:

Cochlear nucleus

CNIC:

Central nucleus of the inferior colliculus

cp:

Cerebral peduncle

D:

Dorsal

dMG:

Dorsal nucleus of the medial geniculate

DMW:

Dorsal medial wedge

DNLL:

Dorsal nucleus of the lateral lemniscus

ECIC:

External cortex of the inferior colliculus

FB:

Fast blue

fBDA:

Fluorescein tagged biotinylated dextran amine

FG:

Fluorogold

GBC:

Globular bushy cell

GlyR:

Glycine receptor

GLYT2:

Glycine transporter

IC:

Inferior colliculus

LL:

Lateral lemniscus

LNTB:

Lateral nucleus of the trapezoid body

LSO:

Lateral superior olive

M:

Medial

MGB:

Medial geniculate body

ml:

Medial lemniscus

mMG:

Medial nucleus of the medial geniculate

MNTB:

Medial nucleus of the trapezoid body

MSO:

Medial superior olive

NBIC:

Nucleus of the brachium of the inferior colliculus

NLL:

Nuclei of the lateral lemniscus

NT:

Neurotrace

P:

Postnatal

PAG:

Periaqueductal gray

PBS:

Phosphate buffered saline

PIL:

Posterior intralaminar nucleus

PN:

Pontine nuclei

PP:

Peripeduncular nucleus

SC:

Superior colliculus

scp:

Superior cerebellar peduncle

SG:

Suprageniculate nucleus

SN:

Substantia nigra

SOC:

Superior olivary complex

SPON:

Superior paraolivary nucleus

v:

Ventral

VCN:

Ventral cochlear nucleus

VG:

Ventral geniculate

vMG:

Ventral nucleus of the medial geniculate

VNLL:

Ventral nucleus of the lateral lemniscus

VNTB:

Ventral nucleus of the trapezoid body

References

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183(3):519–538

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Prain SM (1974) Medial geniculate body: unit responses in the awake cat. J Neurophysiol 37(3):512–521

    CAS  PubMed  Google Scholar 

  • Altaher W, Alhelo H, Chosky D, Kulesza RJ Jr (2021) Neonatal exposure to monosodium glutamate results in impaired auditory brainstem structure and function. Hear Res 405:108243

    PubMed  Google Scholar 

  • Anderson LA, Linden JF (2016) Mind the gap: two dissociable mechanisms of temporal processing in the auditory system. J Neurosci 36(6):1977–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson LA, Malmierca MS, Wallace MN, Palmer AR (2006) Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. Eur J Neurosci 24(2):491–498

    CAS  PubMed  Google Scholar 

  • Andersen RA, Roth GL, Aitkin LM, Merzenich MM (1980) The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J Comp Neurol 194(3):649–662

    CAS  PubMed  Google Scholar 

  • Angelucci A, Clasca F, Sur M (1998) Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus. J Comp Neurol 400:417–439

    CAS  PubMed  Google Scholar 

  • Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol 310(1):21–44

    CAS  PubMed  Google Scholar 

  • Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12(7):2819–2837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beyerl BD (1978) Afferent projections to the central nucleus of the inferior colliculus in the rat. Brain Res 145(2):209–223

    CAS  PubMed  Google Scholar 

  • Blosa M, Sonntag M, Brückner G, Jäger C, Seeger G, Matthews RT, Rübsamen R, Arendt T, Morawski M (2013) Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body–implications for physiological functions. Neuroscience 228:215–234

    CAS  PubMed  Google Scholar 

  • Borst JG, Soria van Hoeve J. The calyx of Held synapse: from model synapse to auditory relay. Annu Rev Physiol. 2012;74:199–224.

  • Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to the central nucleus of inferior colliculus in cat. J Comp Neurol 197(4):705–722

    CAS  PubMed  Google Scholar 

  • Cajal S, Ramon Y (1911) Histologie du Systeme Nerveux de I’Homme et des Vertebres, Tome 11. Maloine, Paris

    Google Scholar 

  • Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528

    PubMed  PubMed Central  Google Scholar 

  • Casseday JH, Kobler JB, Isbey SF, Covey E (1989) Central acoustic tract in an echolocating bat: an extralemniscal auditory pathway to the thalamus. J Comp Neurol 287(2):247–259

  • Cetas JS, Price RO, Velenovsky DS, Crowe JJ, Sinex DG, McMullen NT (2002) Cell types and response properties of neurons in the ventral division of the medial geniculate body of the rabbit. J Comp Neurol 445(1):78–96

    PubMed  Google Scholar 

  • Coleman JR, Clerici WJ (1987) Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol 262(2):215–226

    CAS  PubMed  Google Scholar 

  • Druga R, Syka J (1984) Ascending and descending projections to the inferior colliculus in the rat. Physiol Bohemoslov 33(1):31–42

    CAS  PubMed  Google Scholar 

  • Englitz B, Tolnai S, Typlt M, Jost J, Rübsamen R (2009) Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation. PLoS ONE 4(10):e7014

    PubMed  PubMed Central  Google Scholar 

  • Fredrich M, Reisch A, Illing RB (2009) Neuronal subtype identity in the rat auditory brainstem as defined by molecular profile and axonal projection. Exp Brain Res 195(2):241–260

    CAS  PubMed  Google Scholar 

  • Friauf E (1993) Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats. J Comp Neurol 334(1):59–74

    CAS  PubMed  Google Scholar 

  • Friauf E (1994) Distribution of calcium-binding protein calbindin-D28k in the auditory system of adult and developing rats. J Comp Neurol 349(2):193–211

    CAS  PubMed  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73(2):263–284

    CAS  PubMed  Google Scholar 

  • Friauf E, Hammerschmidt B, Kirsch J (1997) Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J Comp Neurol 385(1):117–134

    CAS  PubMed  Google Scholar 

  • Friauf E, Aragón C, Löhrke S, Westenfelder B, Zafra F (1999) Developmental expression of the glycine transporter GLYT2 in the auditory system of rats suggests involvement in synapse maturation. J Comp Neurol 412(1):17–37

    CAS  PubMed  Google Scholar 

  • Fubara BM, Casseday JH, Covey E, Schwartz-Bloom RD (1996) Distribution of GABAA, GABAB, and glycine receptors in the central auditory system of the big brown bat. Eptesicus Fuscus J Comp Neurol 369(1):83–92

    CAS  PubMed  Google Scholar 

  • Galambos R, Meyers RE, Sheatz GC (1961) Extralemniscal activation of auditory cortex in cats. Amer J Physiol 200:23–28

    CAS  PubMed  Google Scholar 

  • Glendenning KK, Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp Neurol 197(4):673–703

    CAS  PubMed  Google Scholar 

  • Glover JC (1995) Retrograde and anterograde axonal tracing with fluorescent dextrans in the embryonic nervous system. Neurosci Protoc 95:1–13

    Google Scholar 

  • Goldberg JM, Neff WD (1961) Frequency discrimination after bilateral section of the brachium of the inferior colliculus. J Comp Neurol 116:265–289

    CAS  PubMed  Google Scholar 

  • Grothe B (1994) Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J Neurophysiol 71(2):706–721

    CAS  PubMed  Google Scholar 

  • Grothe B, Sanes DH (1993) Bilateral inhibition by glycinergic afferents in the medial superior olive. J Neurophysiol 69(4):1192–1196

    CAS  PubMed  Google Scholar 

  • Grothe B, Sanes DH (1994) Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study. J Neurosci 14(3 Pt 2):1701–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JM, Irving R (1964) Nucleus of the trapezoid body: dual afferent innervation. Science 143(3605):473–474

    CAS  PubMed  Google Scholar 

  • Härtig W, Singer A, Grosche J, Brauer K, Ottersen OP, Brückner G (2001) Perineuronal nets in the rat medial nucleus of the trapezoid body surround neurons immunoreactive for various amino acids, calcium-binding proteins and the potassium channel subunit Kv3.1b. Brain Res 899(1–2):123–133

    PubMed  Google Scholar 

  • Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1989) GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res 501(2):269–286

    CAS  PubMed  Google Scholar 

  • Hilbig H, Nowack S, Boeckler K, Bidmon HJ, Zilles K (2007) Characterization of neuronal subsets surrounded by perineuronal nets in the rhesus auditory brainstem. J Anat 210(5):507–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadner A, Berrebi AS (2008) Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience 151(3):868–887

    CAS  PubMed  Google Scholar 

  • Kadner A, Kulesza RJ Jr, Berrebi AS (2006) Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J Neurophysiol 95(3):1499–1508

    PubMed  Google Scholar 

  • Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5(3):247–253

    CAS  PubMed  Google Scholar 

  • Kelley PE, Frisina RD, Zettel ML, Walton JP (1992) Differential calbindin-like immunoreactivity in the brain stem auditory system of the chinchilla. J Comp Neurol 320(2):196–212

    CAS  PubMed  Google Scholar 

  • Kelly JB, Liscum A, van Adel B, Ito M (1998) Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat’s inferior colliculus. Hear Res 116(1–2):43–54

    CAS  PubMed  Google Scholar 

  • Kelly JB, van Adel BA, Ito M (2009) Anatomical projections of the nuclei of the lateral lemniscus in the albino rat (Rattus norvegicus). J Comp Neurol 512(4):573–593

    PubMed  Google Scholar 

  • Kopp-Scheinpflug C, Tolnai S, Malmierca MS, Rübsamen R (2008) The medial nucleus of the trapezoid body: comparative physiology. Neuroscience 154(1):160–170

    CAS  PubMed  Google Scholar 

  • Kudo M, Nakamura Y, Tokuno H, Kitao Y (1990) Auditory brainstem in the mole (Mogera): nuclear configurations and the projections to the inferior colliculus. J Comp Neurol 298(4):400–412

    CAS  PubMed  Google Scholar 

  • Kulesza RJ Jr, Berrebi AS (2000) Superior paraolivary nucleus of the rat is a GABAergic nucleus. J Assoc Res Otolaryngol 1(4):255–269

    PubMed  PubMed Central  Google Scholar 

  • Kulesza RJ Jr, Grothe B (2015) Yes, there is a medial nucleus of the trapezoid body in humans. Front Neuroanat 9:35

    PubMed  PubMed Central  Google Scholar 

  • Kulesza RJ, Viñuela A, Saldaña E, Berrebi AS (2002) Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear Res 168(1–2):12–24

    PubMed  Google Scholar 

  • Kulesza RJ Jr, Spirou GA, Berrebi AS (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 89(4):2299–2312

    PubMed  Google Scholar 

  • Kulesza RJ Jr, Kadner A, Berrebi AS (2007) Distinct roles for glycine and GABA in shaping the response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 97(2):1610–1620

    CAS  PubMed  Google Scholar 

  • Kuwabara N, Zook JM (1992) Projections to the medial superior olive from the medial and lateral nuclei of the trapezoid body in rodents and bats. J Comp Neurol 324(4):522–538

    CAS  PubMed  Google Scholar 

  • Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 314(4):684–706

    CAS  PubMed  Google Scholar 

  • Lohmann C, Friauf E (1996) Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J Comp Neurol 367(1):90–109

    CAS  PubMed  Google Scholar 

  • Malmierca MS, Merchán MA, Henkel CK, Oliver DL (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. J Neurosci 22(24):10891–10897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour Y, Kulesza RJ (2021) The Untouchable Ventral Nucleus of the Trapezoid Body: Preservation of a Nucleus in an Animal Model of Autism Spectrum Disorder. Front Integr Neurosci 15:730439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour Y, Ahmed SN, Kulesza R (2021) Abnormal morphology and subcortical projections to the medial geniculate in an animal model of autism. Exp Brain Res 239(2):381–400

    PubMed  Google Scholar 

  • Matsubara JA (1990) Calbindin D-28K immunoreactivity in the cat’s superior olivary complex. Brain Res 508(2):353–357

    CAS  PubMed  Google Scholar 

  • Mc Laughlin M, van der Heijden M, Joris PX (2008) How secure is in vivo synaptic transmission at the calyx of Held? J Neurosci 28(41):10206–10219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3(1):237–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LA, Trussell LO (2017) Corelease of Inhibitory Neurotransmitters in the Mouse Auditory Midbrain. J Neurosci 37(39):9453–9464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morest DK (1968a) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9(2):288–311

    CAS  PubMed  Google Scholar 

  • Morest DK (1968b) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwicklungsgesch 127(3):201–220

    CAS  PubMed  Google Scholar 

  • Ngodup T, Romero GE, Trussell LO (2020) Identification of an inhibitory neuron subtype, the L-stellate cell of the cochlear nucleus. Elife 9:e54350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending auditory projections to the inferior colliculus in the adult gerbil. Meriones Unguiculatus J Comp Neurol 214(2):131–143

    CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229(3):374–392

    CAS  PubMed  Google Scholar 

  • Papez, JW. (1929) Central acoustic tract in cat and man. Anat Rec 4260

  • Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46(1):101–134

    PubMed  Google Scholar 

  • Riquelme R, Saldaña E, Osen KK, Ottersen OP, Merchán MA (2001) Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. J Comp Neurol 432(4):409–424

    CAS  PubMed  Google Scholar 

  • Roberts MT, Seeman SC, Golding NL (2014) The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings. Front Neural Circuits 8:49

    PubMed  PubMed Central  Google Scholar 

  • Rose JE, Woolsey CN (1949) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J Comp Neurol 91(3):441–466

    CAS  PubMed  Google Scholar 

  • Rouiller EM, de Ribaupierre F (1985) Origin of afferents to physiologically defined regions of the medial geniculate body of the cat: ventral and dorsal divisions. Hear Res 19(2):97–114

    CAS  PubMed  Google Scholar 

  • Saint Marie RL, Ostapoff EM, Morest DK, Wenthold RJ (1989) Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J Comp Neurol 279(3):382–396

    CAS  PubMed  Google Scholar 

  • Saint Marie RL, Shneiderman A, Stanforth DA (1997) Patterns of gamma-aminobutyric acid and glycine immunoreactivities reflect structural and functional differences of the cat lateral lemniscal nuclei. J Comp Neurol 389(2):264–276

    CAS  PubMed  Google Scholar 

  • Saldaña E, Aparicio MA, Fuentes-Santamaría V, Berrebi AS (2009) Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 163(1):372–387

    PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    CAS  PubMed  Google Scholar 

  • Schmidt E, Wolski TP Jr, Kulesza RJ Jr (2010) Distribution of perineuronal nets in the human superior olivary complex. Hear Res 265(1–2):15–24

    PubMed  Google Scholar 

  • Schofield BR (1994) Projections to the cochlear nuclei from principal cells in the medial nucleus of the trapezoid body in guinea pigs. J Comp Neurol 344(1):83–100

    CAS  PubMed  Google Scholar 

  • Schofield BR, Cant NB (1992) Organization of the superior olivary complex in the guinea pig: II. Patterns of projection from the periolivary nuclei to the inferior colliculus. J Comp Neurol 317(4):438–455

    CAS  PubMed  Google Scholar 

  • Schofield BR, Motts SD, Mellott JG, Foster NL (2014a) Projections from the dorsal and ventral cochlear nuclei to the medial geniculate body. Front Neuroanat 8:10

    PubMed  PubMed Central  Google Scholar 

  • Schofield BR, Mellott JG, Motts SD (2014b) Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Front Neuroanat 8:70

    PubMed  PubMed Central  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304(3):387–407

    CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331(2):245–260

    CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79(6):3127–3142

    CAS  PubMed  Google Scholar 

  • Sommer I, Lingenhöhl K, Friauf E (1993) Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp Brain Res 95(2):223–239

    CAS  PubMed  Google Scholar 

  • Spangler KM, Warr WB, Henkel CK (1985) The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol 238(3):249–262

    CAS  PubMed  Google Scholar 

  • Tebecis AK (1970) Effects of monoamines and amino acids on medial geniculate neurones of the cat. Neuropharmacology 9(4):381–390

    CAS  PubMed  Google Scholar 

  • Vasquez-Lopez SA, Weissenberger Y, Lohse M, Keating P, King AJ, Dahmen JC (2017) Thalamic input to auditory cortex is locally heterogeneous but globally tonotopic. Elife 6:e25141

    PubMed  PubMed Central  Google Scholar 

  • Vetter DE, Mugnaini E (1990) An evaluation of retrograde tracing methods for the identification of chemically distinct cochlear efferent neurons. Arch Ital Biol 128(2–4):331–353

    CAS  PubMed  Google Scholar 

  • Viñuela A, Aparicio MA, Berrebi AS, Saldaña E (2011) Connections of the Superior Paraolivary Nucleus of the Rat: II. Reciprocal Connections with the Tectal Longitudinal Column. Front Neuroanat 5:1

    PubMed  PubMed Central  Google Scholar 

  • Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509(1):183–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neuroscience 22(3):897–912

    CAS  PubMed  Google Scholar 

  • Winer JA, Diamond IT, Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J Comp Neurol 176(3):387–417

    CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, Pollak GD (1995) GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. J Comp Neurol 355(3):317–353

    CAS  PubMed  Google Scholar 

  • Yu YQ, Xiong Y, Chan YS, He J (2004) In vivo intracellular responses of the medial geniculate neurones to acoustic stimuli in anaesthetized guinea pigs. J Physiol 560(Pt 1):191–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarbin MA, Wamsley JK, Kuhar MJ (1981) Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine. J Neurosci 1(5):532–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman R, Smith A, Fech T, Mansour Y, Kulesza RJ Jr (2020) In utero exposure to valproic acid disrupts ascending projections to the central nucleus of the inferior colliculus from the auditory brainstem. Exp Brain Res 238(3):551–563

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Lake Erie Consortium for Osteopathic Medical Training for grant support for this project.

Author information

Authors and Affiliations

Authors

Contributions

AB: experimentation, data collection, data analysis, writing—review and editing. YM: conceptualization, experimentation, data collection, data analysis, writing—review and editing. RK: conceptualization, study design, resources, experimentation, project administration, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Randy Kulesza.

Ethics declarations

Conflict of interest

The authors declare they have no affiliations with or involvement in any organization or group with any financial interest in the subject matter or content in this manuscript and accordingly declare no conflicts of interest.

Additional information

Communicated by Bill J Yates.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burchell, A., Mansour, Y. & Kulesza, R. Leveling up: a long-range olivary projection to the medial geniculate without collaterals to the central nucleus of the inferior colliculus in rats. Exp Brain Res 240, 3217–3235 (2022). https://doi.org/10.1007/s00221-022-06489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-022-06489-2

Keywords

Navigation