Skip to main content
Log in

Tonic serotonergic input increases the burst firing mode and diminishes the firing rate of reticular thalamic nucleus neurons through 5-HT1A receptors activation in anesthetized rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The reticular thalamic nucleus (RTn) is a thin shell of GABAergic neurons that covers the dorsal thalamus that regulate the global activity of all thalamic nuclei. RTn controls the flow of information between thalamus and cerebral cortex since it receives glutamatergic information from collaterals of thalamo-cortical (TCs) and cortico-thalamic neurons. It also receives aminergic information from several brain stem nuclei, including serotonergic fibers originated in the dorsal raphe nucleus. RTn neurons express serotonergic receptors including the 5-HT1A subtype, however, the role of this receptor in the RTn electrical activity has been scarcely analyzed. In this work, we recorded in vivo the unitary spontaneous electrical activity of RTn neurons in anesthetized rats; our study aimed to obtain information about the effects of 5-HT1A receptors in RTn neurons. Local application of fluoxetine (a serotonin reuptake inhibitor) increases burst firing index accompanied by a decrease in the basal spiking rate. Local application of different doses of serotonin and 8-OH-DPAT (a specific 5-HT1A receptor agonist) causes a similar response to fluoxetine effects. Local 5-HT1A receptors blockade produces opposite effects and suppresses the effect by 8-OH-DPAT. Our findings indicate the presence of a serotonergic tonic discharge in the RTn that increases the burst firing index and simultaneously decreases the basal spiking frequency through 5-HT1A receptors activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

Download references

Funding

Research reported in this publication was supported by grant No. 20181447 from SEPI-IPN to E.Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Querejeta.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Francesco Lacquaniti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrientos, R., Alatorre, A., Oviedo-Chávez, A. et al. Tonic serotonergic input increases the burst firing mode and diminishes the firing rate of reticular thalamic nucleus neurons through 5-HT1A receptors activation in anesthetized rats. Exp Brain Res 240, 1341–1356 (2022). https://doi.org/10.1007/s00221-022-06328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-022-06328-4

Keywords

Navigation