Skip to main content
Log in

Functional specialization in human dorsal pathway for stereoscopic depth processing

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Binocular disparity, a primary cue for stereoscopic depth perception, is widely represented in visual cortex. However, the functional specialization in the disparity processing network remains unclear. Using magnetic resonance imaging-guided transcranial magnetic stimulation, we studied the causal contributions of V3A and MT+ to stereoscopic depth perception. Subjects viewed random-dot stereograms forming transparent planes with various interplane disparities. Their smallest detectable disparity and largest detectable disparity were measured in two experiments. We found that the smallest detectable disparity was affected by V3A, but not MT+ , stimulation. On the other hand, the largest detectable disparity was affected by both V3A and MT+ stimulation. Our results suggest different roles of V3A and MT+ in stereoscopic depth processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available upon request.

References

  • Allen EA, Pasley BN, Duong T, Freeman RD (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317(5846):1918–1921

    Article  CAS  Google Scholar 

  • Anzai A, DeAngelis GC (2010) Neural computations underlying depth perception. Curr Opin Neurobiol 20(3):367–375

    Article  CAS  Google Scholar 

  • Backus BT, Fleet DJ, Parker AJ, Heeger DJ (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86(4):2054–2068

    Article  CAS  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10(4):433–436

    Article  CAS  Google Scholar 

  • Cai P, Chen N, Zhou T, Thompson B, Fang F (2014) Global versus local: double dissociation between MT+ and V3A in motion processing revealed using continuous theta burst transcranial magnetic stimulation. Exp Brain Res 232(12):4035–4041

    Article  Google Scholar 

  • Carmel D, Walsh V, Lavie N, Rees G (2010) Right parietal TMS shortens dominance durations in binocular rivalry. Curr Biol 20(18):R799–R800

    Article  CAS  Google Scholar 

  • Chowdhury SA, DeAngelis GC (2008) Fine discrimination training alters the causal contribution of macaque area MT to depth perception. Neuron 60(2):367–377

    Article  CAS  Google Scholar 

  • Cocchi L, Sale MV, Lord A, Zalesky A, Breakspear M, Mattingley JB (2015) Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics. J Neurophysiol 113(9):3375–3385

    Article  Google Scholar 

  • Cottereau BR, McKee SP, Ales JM, Norcia AM (2011) Disparity-tuned population responses from human visual cortex. J Neurosci 31(3):954–965

    Article  CAS  Google Scholar 

  • Cumming BG, DeAngelis GC (2001) The physiology of stereopsis. Annu Rev Neurosci 24:203–238

    Article  CAS  Google Scholar 

  • DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394:677–680

    Article  CAS  Google Scholar 

  • DeAngelis GC, Newsome WT (1999) Organization of disparity-selective neurons in macaque area MT. J Neurosci 19(4):1398–1415

    Article  CAS  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7(2):181–192

    Article  CAS  Google Scholar 

  • Goncalves NR, Ban H, Sánchez-Panchuelo RM, Francis ST, Schluppeck D, Welchman AE (2015) 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. J Neurosci 35(7):3056–3072

    Article  CAS  Google Scholar 

  • Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45(2):201–206

    Article  CAS  Google Scholar 

  • Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst Tech J 39:1125–1162

    Article  Google Scholar 

  • Krug K, Parker AJ (2011) Neurons in dorsal visual area V5/MT signal relative disparity. J Neurosci 31(49):17892–17904

    Article  CAS  Google Scholar 

  • Kumar T, Glaser DA (1992) Depth discrimination of a line is improved by adding other nearby lines. Vis Res 32(9):1667–1676

    Article  CAS  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol 49:1148–1167

    Article  CAS  Google Scholar 

  • Minini L, Parker AJ, Bridge H (2010) Neural modulation by binocular disparity greatest in human dorsal visual stream. J Neurophysiol 104(1):169–178

    Article  Google Scholar 

  • Neri P, Bridge H, Heeger DJ (2004) Stereoscopic processing of absolute and relative disparity in human visual cortex. J Neurophysiol 92(3):1880–1891

    Article  Google Scholar 

  • Parker AJ (2007) Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 8:379

    Article  CAS  Google Scholar 

  • Parker A, Yang Y (1989) Spatial properties of disparity pooling in human stereo vision. Vis Res 29:1525–1538

    Article  CAS  Google Scholar 

  • Poggio GF (1995) Mechanisms of stereopsis in monkey visual cortex. Cereb Cortex 5:193–204

    Article  CAS  Google Scholar 

  • Preston TJ, Li S, Kourtzi Z, Welchman AE (2008) Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. J Neurosci 28(44):11315–11327

    Article  CAS  Google Scholar 

  • Qian N (1997) Binocular disparity and the perception of depth. Neuron 18:359–368

    Article  CAS  Google Scholar 

  • Roy JP, Komatsu H, Wurtz RH (1992) Disparity sensitivity of neurons in monkey extrastriate area MST. J Neurosci 12:2478–2492

    Article  CAS  Google Scholar 

  • Rutschmann RM, Greenlee MW (2004) BOLD response in dorsal areas varies with relative disparity level. NeuroReport 15(4):615–619

    Article  Google Scholar 

  • Sereno MI, Dale A, Reppas J et al (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893

    Article  CAS  Google Scholar 

  • Tsao DY, Vanduffel W, Sasaki Y et al (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39(3):555–568

    Article  CAS  Google Scholar 

  • Uka T, DeAngelis GC (2003) Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J Neurosci 23(8):3515–3530

    Article  CAS  Google Scholar 

  • Uka T, DeAngelis GC (2006) Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J Neurosci 26(25):6791–6802

    Article  CAS  Google Scholar 

  • van Kemenade BM, Muggleton N, Walsh V, Saygin AP (2012) Effects of TMS over premotor and superior temporal cortices on biological motion perception. J Cogn Neurosci 24:896–904

    Article  Google Scholar 

  • Watson AB, Pelli DG (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys 33(2):113–120

    Article  CAS  Google Scholar 

  • Westheimer G (1979) Cooperative neural processes involved in stereoscopic acuity. Exp Brain Res 36(3):585–597

    Article  CAS  Google Scholar 

  • Westheimer G (1986) Spatial interaction in the domain of disparity signals in human stereoscopic vision. J Physiol 370:619–629

    Article  CAS  Google Scholar 

  • Wheatstone C (1838) XVIII. Contributions to the physiology of vision—part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos Trans R Soc Lond 128:371–394

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC 31930053 and NSFC 31971031. We thank Siyuan Cheng for proofreading.

Funding

This work was supported by NSFC 31930053 and NSFC 31971031.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by NC and ZC. The first draft of the manuscript was written by NC and ZC. All authors revised the manuscript.

Corresponding authors

Correspondence to Nihong Chen or Fang Fang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

The experimental procedures and protocols have been approved by the human subject review committee of Peking University.

Consent to participate

All subjects gave written, informed consent in accordance with the procedures and protocols approved by the human subject review committee of Peking University.

Consent for publication

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication.

Code availability

The codes for stimuli presentation of this study are available upon request.

Additional information

Communicated by Melvyn A. Goodale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Chen, Z. & Fang, F. Functional specialization in human dorsal pathway for stereoscopic depth processing. Exp Brain Res 238, 2581–2588 (2020). https://doi.org/10.1007/s00221-020-05918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05918-4

Keywords

Navigation