Skip to main content

Advertisement

Log in

Cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

A Letter to the editor to this article was published on 29 April 2021

A Letter to the Editor to this article was published on 09 March 2021

Abstract

Transcranial magnetic stimulation (TMS) based methods are emerging as a unique approach to evaluate in real-time brain electrical activity in healthy and pathological conditions. By applying TMS pulses in two different bran areas within a short temporal frame of few milliseconds, it is possible to investigate their physiological interactions. These paradigms, collectively termed dual-site TMS, have been inspired by Professor John Rothwell’s work, based on the idea that applying a conditioning stimulus over a cortical area may activate putative pathways projecting onto a second target area, thus providing a unique opportunity to test the causal effects between interconnected brain areas. This review highlights the most important features of dual-coil TMS protocols, mainly pioneered in Professor John Rothwell's lab. In the first part, I reviewed development of dual-site TMS protocols leading to the discovery of a distributed system of short-latency interactions within the human parieto-frontal network, likely mediated by direct anatomical pathways. In the second part, the physiological role of these dual-site TMS evoked pathways is considered, describing how these functional interactions are not fixed but vary depending on the brain activation, the condition and on the precise time window in which they are explored. Then, I reviewed recent advances showing that the repeated coupling of interconnected neuronal populations, by means of dual-coil TMS, is able to induce spike-time-dependent plasticity and to determine selective potentiation of physiological connectivity between two human brain regions. Finally, the therapeutic implications of these novel discoveries are discussed, pointing to multi-site TMS as a novel tool to identify early features of synaptic dysfunctions, to monitor disease progression and potentially to provide novel therapeutic approaches by reshaping plasticity in different neurological and psychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arai N, Lu MK, Ugawa Y, Ziemann U (2012) Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study. Exp Brain Res 220(1):79–87

    PubMed  Google Scholar 

  • Boorman ED, O'Shea J, Sebastian C, Rushworth MF, Johansen-Berg H (2007) Individual differences in white-matter microstructure reflect variation in functional connectivity during choice. Curr Biol 17(16):1426–1431. https://doi.org/10.1016/j.cub.2007.07.040

    Article  CAS  PubMed  Google Scholar 

  • Bruni S, Gerbella M, Bonini L, Borra E, Coudé G, Ferrari PF, Fogassi L, Maranesi M, Rodà F, Simone L, Serventi FU, Rozzi S (2018) Cortical and subcortical connections of parietal and premotor nodes of the monkey hand mirror neuron network. Brain Struct Funct 223(4):1713–1729

    PubMed  Google Scholar 

  • Buch ER, Johnen VM, Nelissen N, O'Shea J, Rushworth MF (2011) Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J Neurosci 31:17669–17679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bäumer T, Bock F, Koch G, Lange R, Rothwell JC, Siebner HR, Münchau A (2006) Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways. J Physiol 572(Pt 3):857–868

    PubMed  PubMed Central  Google Scholar 

  • Bäumer T, Schippling S, Kroeger J, Zittel S, Koch G, Thomalla G, Rothwell JC, Siebner HR, Orth M, Münchau A (2009) Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest—a bifocal TMS study. Clin Neurophysiol 120(9):1724–1731

    PubMed  Google Scholar 

  • Carrera E, Tononi G (2014) Diaschisis: past, present, future. Brain 137(Pt 9):2408–2422

    PubMed  Google Scholar 

  • Casula EP, Pellicciari MC, Picazio S, Caltagirone C, Koch G (2016) Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. Neuroimage 143:204–213

    PubMed  Google Scholar 

  • Cattaneo L, Giampiccolo D, Meneghelli P, Tramontano V, Sala F (2019) A study of parietal-motor connectivity by intraoperative dual cortical stimulation. bioRxiv. https://doi.org/10.1101/747337

    Article  Google Scholar 

  • Cerri G, Shimazu H, Maier MA, Lemon RN (2003) Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles. J Neurophysiol 90(2):832–842

    CAS  PubMed  Google Scholar 

  • Chiappini E, Silvanto J, Hibbard PB, Avenanti A, Romei V (2018) Strengthening functionally specific neural pathways with transcranial brain stimulation. Curr Biol 28(13):R735–R736. https://doi.org/10.1016/j.cub.2018.05.083

    Article  CAS  PubMed  Google Scholar 

  • Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14(6):1444–1453. https://doi.org/10.1006/nimg.2001.0918

    Article  CAS  PubMed  Google Scholar 

  • Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45(9):1050–1057

    PubMed  PubMed Central  Google Scholar 

  • Fang PC, Stepniewska I, Kaas JH (2005) Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate. Otolemur Garnetti J Comp Neurol 490(3):305–333. https://doi.org/10.1002/cne.20665

    Article  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A (2014) Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci USA 111(41):E4367–E4375

    CAS  PubMed  Google Scholar 

  • Gharbawie OA, Stepniewska I, Qi H, Kaas JH (2011) Multiple parietal-frontal pathways mediate grasping in macaque monkeys. J Neurosci 31(32):11660–11677. https://doi.org/10.1523/JNEUROSCI.1777-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groppa S, Werner-Petroll N, Münchau A, Deuschl G, Ruschworth MF, Siebner HR (2012) A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex. Neuroimage 62(1):500–509

    PubMed  Google Scholar 

  • Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H, Furubayashi T, Shiio Y, Uesugi H, Kanazawa I (2001) Interhemispheric facilitation of the hand motor area in humans. J Physiol 531(Pt 3):849–859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron. 45(2):201–206. https://doi.org/10.1016/j.neuron.2004.12.033

    Article  CAS  PubMed  Google Scholar 

  • Johnen VM, Neubert FX, Buch ER, Verhagen L, O'Reilly JX, Mars RB, Rushworth MF (2015) Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. Elife 9:4

    Google Scholar 

  • Klöppel S, Bäumer T, Kroeger J et al (2008) The cortical motor threshold reflects microstructural properties of cerebral white matter. Neuroimage 40(4):1782–1791. https://doi.org/10.1016/j.neuroimage.2008.01.019

    Article  PubMed  Google Scholar 

  • Koch G (2019) The new era of TMS-EEG: moving towards the clinical practice. Clin Neurophysiol 130(5):791–792

    PubMed  Google Scholar 

  • Koch G, Bonnì S, Casula EP, Iosa M, Paolucci S, Pellicciari MC, Cinnera AM, Ponzo V, Maiella M, Picazio S, Sallustio F, Caltagirone C (2019) Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol 76(2):170–178

    PubMed  Google Scholar 

  • Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C, Maiella M, Marra C, Cercignani M, Martorana A, Caltagirone C, Bozzali M (2018) Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease. Neuroimage 1(169):302–311

    Google Scholar 

  • Koch G, Cercignani M, Bonnì S, Giacobbe V, Bucchi G, Versace V, Caltagirone C, Bozzali M (2011) Asymmetry of parietal interhemispheric connections in humans. J Neurosci 31:8967–8975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch G, Cercignani M, Pecchioli C, Versace V, Oliveri M, Caltagirone C, Rothwell J, Bozzali M (2010a) In vivo definition of parieto-motor connections involved in planning of grasping movements. Neuroimage 51(1):300–312

    PubMed  Google Scholar 

  • Koch G, Fernandez Del Olmo M, Cheeran B, Ruge D, Schippling S, Caltagirone C, Rothwell JC (2007a) Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci 27(25):6815–6822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch G, Fernandez Del Olmo M, Cheeran B, Schippling S, Caltagirone C, Driver J, Rothwell JC (2008a) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28(23):5944–5953

    PubMed  PubMed Central  Google Scholar 

  • Koch G, Franca M, Mochizuki H, Marconi B, Caltagirone C, Rothwell JC (2007b) Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. J Physiol 578(Pt 2):551–562

    CAS  PubMed  Google Scholar 

  • Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez Sauco M, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26(28):7452–7459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch G, Oliveri M, Cheeran B, Ruge D, Lo Gerfo E, Salerno S, Torriero S, Marconi B, Mori F, Driver J, Rothwell JC, Caltagirone C (2008b) Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain 131(Pt 12):3147–3155

    PubMed  PubMed Central  Google Scholar 

  • Koch G, Ponzo V, Di Lorenzo F, Caltagirone C, Veniero D (2013) Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J Neurosci 33(23):9725–9733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch G, Rothwell JC (2009) TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behav Brain Res 202(2):147–152

    PubMed  Google Scholar 

  • Koch G, Ruge D, Cheeran B, Fernandez Del Olmo M, Pecchioli C, Marconi B, Versace V, Lo Gerfo E, Torriero S, Oliveri M, Caltagirone C, Rothwell JC (2009) TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. J Physiol 587(Pt 17):4281–4292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch G, Versace V, Bonnì S, Lupo F, Lo Gerfo E, Oliveri M, Caltagirone C (2010b) Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia 48(12):3513–3520

    PubMed  Google Scholar 

  • Koganemaru S, Mima T, Nakatsuka M, Ueki Y, Fukuyama H, Domen K (2009) Human motor associative plasticity induced by paired bihemispheric stimulation. J Physiol 587(Pt 19):4629–4644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl S, Hannah R, Rocchi L, Nord CL, Rothwell J, Voon V (2019) Cortical paired associative stimulation influences response inhibition: cortico-cortical and cortico-subcortical networks. Biol Psychiatry 85(4):355–363

    PubMed  Google Scholar 

  • Lago A, Koch G, Cheeran B, Márquez G, Sánchez JA, Ezquerro M, Giraldez M, Fernández-del-Olmo M (2010) Ventral premotor to primary motor cortical interactions during noxious and naturalistic action observation. Neuropsychologia 48(6):1802–1806

    PubMed  Google Scholar 

  • Di Lorenzo F, Ponzo V, Motta C, Bonnì S, Picazio S, Caltagirone C, Bozzali M, Martorana A, Koch G (2018) Impaired spike timing dependent cortico-cortical plasticity in Alzheimer's disease patients. J Alzheimers Dis 66(3):983–991

    PubMed  Google Scholar 

  • Mars RB, Klein MC, Neubert FX et al (2009) Short-latency influence of medial frontal cortex on primary motor cortex during action selection under conflict. J Neurosci 29(21):6926–6931. https://doi.org/10.1523/JNEUROSCI.1396-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki H, Huang YZ, Rothwell JC (2004) Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. J Physiol 561(Pt 1):331–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF (2010) Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci USA 107(30):13240–13245. https://doi.org/10.1073/pnas.1000674107

    Article  PubMed  Google Scholar 

  • Ni Z, Gunraj C, Nelson AJ, Yeh IJ, Castillo G, Hoque T, Chen R (2009) Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex 19(7):1654–1665

    PubMed  Google Scholar 

  • O'Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MF (2007) Functional specificity of human premotor-motor cortical interactions during action selection. Eur J Neurosci 26(7):2085–2095. https://doi.org/10.1111/j.1460-9568.2007.05795.x

    Article  PubMed  Google Scholar 

  • Picazio S, Ponzo V, Koch G (2016) Cerebellar control on prefrontal-motor connectivity during movement inhibition. Cerebellum 15(6):680–687

    PubMed  Google Scholar 

  • Picazio S, Veniero D, Ponzo V, Caltagirone C, Gross J, Thut G, Koch G (2014) Prefrontal control over motor cortex cycles at beta frequency during movement inhibition. Curr Biol 24(24):2940–2945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu G, Shimazu H, Cerri G, Brochier T, Spinks RL, Maier MA, Lemon RN (2009) Modulation of primary motor cortex outputs from ventral premotor cortex during visually guided grasp in the macaque monkey. J Physiol 587(Pt 5):1057–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Premereur E, Van Dromme IC, Romero MC, Vanduffel W, Janssen P (2015) Effective connectivity of depth-structure-selective patches in the lateral bank of the macaque intraparietal sulcus. PLoS Biol 13(2):e1002072

    PubMed  PubMed Central  Google Scholar 

  • Rathelot JA, Dum RP, Strick PL (2017) Posterior parietal cortex contains a command apparatus for hand movements. Proc Natl Acad Sci USA 114(16):4255–4260

    CAS  PubMed  Google Scholar 

  • Ribolsi M, Lisi G, Ponzo V, Siracusano A, Caltagirone C, Niolu C, Koch G (2017) Left hemispheric breakdown of LTP-like cortico-cortical plasticity in schizophrenic patients. Clin Neurophysiol 128(10):2037–2042

    PubMed  Google Scholar 

  • Rizzo V, Siebner HS, Morgante F, Mastroeni C, Girlanda P, Quartarone A (2009) Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism. Cereb Cortex 19(4):907–915

    CAS  PubMed  Google Scholar 

  • Romei V, Chiappini E, Hibbard PB, Avenanti A (2016) Empowering reentrant projections from V5 to V1 boosts sensitivity to motion. Curr Biol 26(16):2155–2160

    CAS  PubMed  Google Scholar 

  • Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74(2):113–122

    CAS  PubMed  Google Scholar 

  • Santarnecchi E, Momi D, Sprugnoli G, Neri F, Pascual-Leone A, Rossi A, Rossi S (2018) Modulation of network-to-network connectivity via spike-timing-dependent noninvasive brain stimulation. Hum Brain Mapp 39(12):4870–4883

    PubMed  PubMed Central  Google Scholar 

  • Shimazu H, Maier MA, Cerri G, Kirkwood PA, Lemon RN (2004) Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J Neurosci 24(5):1200–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JS, Seitzman BA, Ramsey LE, Ortega M, Gordon EM, Dosenbach NUF, Petersen SE, Shulman GL, Corbetta M (2018) Re-emergence of modular brain networks in stroke recovery. Cortex 101:44–59. https://doi.org/10.1016/j.cortex.2017.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584. https://doi.org/10.1093/brain/123.3.572

    Article  PubMed  Google Scholar 

  • Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, Ziemann U, Rothwell JC (2016) Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul 9(3):323–335

    CAS  PubMed  Google Scholar 

  • Tarri M, Brihmat N, Gasq D, Lepage B, Loubinoux I, De Boissezon X, Marque P, Castel-Lacanal E (2018) Five-day course of paired associative stimulation fails to improve motor function in stroke patients. Ann Phys Rehabil Med 61(2):78–84. https://doi.org/10.1016/j.rehab.2017.11.002

    Article  PubMed  Google Scholar 

  • Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci 13(4):182–189

    PubMed  Google Scholar 

  • Tolmacheva A, Savolainen S, Kirveskari E, Lioumis P, Kuusela L, Brandstack N, Ylinen A, Mäkelä JP, Shulga A (2017) Long-term paired associative stimulation enhances motor output of the tetraplegic hand. J Neurotrauma 34(18):2668–2674. https://doi.org/10.1089/neu.2017.4996

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ (2019) Clinical utility and prospective of TMS-EEG. Clin Neurophysiol 130(5):802–844

    PubMed  Google Scholar 

  • Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37(6):703–713

    CAS  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    CAS  PubMed  Google Scholar 

  • Veniero D, Ponzo V, Koch G (2013) Paired associative stimulation enforces the communication between interconnected areas. J Neurosci 33(34):13773–13783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vesia M, Barnett-Cowan M, Elahi B, Jegatheeswaran G, Isayama R, Neva JL, Davare M, Staines WR, Culham JC, Chen R (2017) Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex 92:175–186

    PubMed  Google Scholar 

  • Wahl M, Lauterbach-Soon B, Hattingen E et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138. https://doi.org/10.1523/JNEUROSCI.2320-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E et al (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol (Lond) 565:1039–1052. https://doi.org/10.1113/jphysiol.2005.084954

    Article  CAS  Google Scholar 

  • Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F (2015) TMS and drugs revisited 2014. Clin Neurophysiol 126(10):1847–1868

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Koch.

Additional information

Communicated by Sven Bestmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, G. Cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications. Exp Brain Res 238, 1677–1684 (2020). https://doi.org/10.1007/s00221-020-05844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05844-5

Keywords

Navigation