Skip to main content
Log in

Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Human movements are remarkably adaptive. We are capable of completing movements in a novel visuomotor environment with similar accuracy to those performed in a typical environment. In the current study, we examined if the control processes underlying movements under typical conditions were different from those underlying novel visuomotor conditions. 16 participants were divided into two groups, one receiving continuous visual feedback during all reaches (CF), and the other receiving terminal feedback regarding movement endpoint (TF). Participants trained in a virtual environment by completing 150 reaches to three targets when (1) a cursor accurately represented their hand motion (i.e., typical environment) and (2) a cursor was rotated 45° clockwise relative to their hand motion (i.e., novel environment). Analyses of within-trial measures across 150 reaching trials revealed that participants were able to demonstrate similar movement outcomes (i.e., movement time and angular errors) regardless of visual feedback or reaching environment by the end of reach training. Furthermore, a reduction in variability across several measures (i.e., reaction time, movement time, time after peak velocity, and jerk score) over time showed that participants improved the consistency of their movements in both reaching environments. However, participants took more time and were less consistent in the timing of initiating their movements when reaching in a novel environment compared to reaching in a typical environment, even at the end of training. As well, angular error variability at different proportions of the movement trajectory was consistently greater when reaching in a novel environment across trials and within a trial. Together, the results suggest a greater contribution of offline control processes and less effective online corrective processes when reaching in a novel environment compared to when reaching in a typical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abahnini K, Proteau L, Temprado JJ (1997) Evidence supporting the importance of peripheral visual information for the directional control of aiming movements. J Mot Behav 29(3):230–242

    Article  CAS  PubMed  Google Scholar 

  • Aboelnasr EA, Hegazy FA, Altalway HA (2017) Kinematic characteristics of reaching in children with hemiplegic cerebral palsy: a comparative study. Brain Inj 31(1):83–89

    Article  PubMed  Google Scholar 

  • Alberts JL, Saling M, Adler CH, Stelmach GE (2000) Disruptions in the reach-to-grasp actions of Parkinson’s patients. Exp Brain Res 134(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Batcho CS, Gagné M, Bouyer LJ, Roy JS, Mercier C (2016) Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field. Neuroscience 337:267–275

    Article  CAS  PubMed  Google Scholar 

  • Bernier P-M, Chua R, Franks IM, Khan MA (2006) Determinants of offline processing of visual information for the control of reaching movements. J Mot Behav 38(5):331–338

    Article  PubMed  Google Scholar 

  • Burkitt JJ, Grierson LEM, Straite V, Elliott D, Lyons J (2013) The impact of prior knowledge about visual feedback on motor performance and learning. Adv Phys Educ 3(1):1–9

    Article  Google Scholar 

  • Cheng DT, Luis M, Tremblay L (2008) Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Exp Brain Res 189(4):403–410

    Article  PubMed  Google Scholar 

  • Clower DM, Boussaoud D (2000) Selective use of perceptual recalibration versus visuomotor skill acquisition. J Neurophysiol 84(5):2703–2708

    Article  CAS  PubMed  Google Scholar 

  • de Grosbois J, Tremblay L (2016) Quantifying online visuomotor feedback utilization in the frequency domain. Behav Res Methods 48(4):1653–1666

    Article  PubMed  Google Scholar 

  • de Grosbois J, Tremblay L (2018) Distinct and flexible rates of online control. Psychol Res 82(6):1054–1072

    Article  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431

    Article  CAS  PubMed  Google Scholar 

  • Elliott D, Allard F (1985) The utilization of visual feedback information during rapid pointing movements. Q J Exp Psychol Sect A 37(3):407–425

    Article  CAS  Google Scholar 

  • Elliott D, Lee TD (1995) The role of target information on manual-aiming bias. Psychol Res 58(1):2–9

    Google Scholar 

  • Elliott D, Carson R, Goodman D, Chua R (1991) Discrete vs. continuous visual control of manual aiming. Hum Mov Sci 10:393–418

    Article  Google Scholar 

  • Elliott D, Binsted G, Heath M (1999) The control of goal-directed limb movements: correcting errors in the trajectory. Hum Mov Sci 18:121–136

    Article  Google Scholar 

  • Elliott D, Helsen WF, Chua R (2001) A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychol Bull 127(3):342–357

    Article  CAS  PubMed  Google Scholar 

  • Elliott D, Hansen S, Mendoza J, Tremblay L (2004) Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming. J Mot Behav 36(3):339–351

    Article  PubMed  Google Scholar 

  • Elliott D, Hansen S, Grierson LEM, Lyons J, Bennett SJ, Hayes SJ (2010) Goal-directed aiming: two components but multiple processes. Psychol Bull 136(6):1023–1044

    Article  PubMed  Google Scholar 

  • Elliott D, Dutoy C, Andrew M, Burkitt JJ, Grierson LEM, Lyons JL, … Bennett SJ (2014) The influence of visual feedback and prior knowledge about feedback on vertical aiming strategies. J Mot Behav 46(6):433–443

    Article  PubMed  Google Scholar 

  • Elliott D, Lyons J, Hayes SJ, Burkitt JJ, Roberts JW, Grierson LEM, … Bennett SJ (2017) The multiple process model of goal-directed reaching revisited. Neurosci Biobehav Rev 72:95–110

    Article  PubMed  Google Scholar 

  • Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR (2011) Relation between reaction time and reach errors during visuomotor adaptation. Behav Brain Res 219:8–14

    Article  PubMed  Google Scholar 

  • Gaveau V, Prablanc C, Laurent D, Rossetti Y, Priot A-E (2014) Visuomotor adaptation needs a validation of prediction error by feedback error. Front Human Neurosci 8:880

    Article  Google Scholar 

  • Ghilardi MF, Gordon J, Ghez C (1995) Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. J Neurophysiol 73(6):2535–2539

    Article  CAS  PubMed  Google Scholar 

  • Grierson LEM, Elliott D (2008) Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes. Hum Mov Sci 27:839–856

    Article  PubMed  Google Scholar 

  • Grierson LEM, Elliott D (2009) Goal-directed aiming and the relative contribution of two online control processes. Am J Psychol 122(3):309–324

    PubMed  Google Scholar 

  • Hansen S, Glazebrook CM, Anson JG, Weeks DJ, Elliott D (2006) The influence of advance information about target location and visual feedback on movement planning and execution. Can J Exp Psychol 60(3):200–208

    Article  PubMed  Google Scholar 

  • Hay JC, Pick HL (1966) Gaze-contingent prism adaptation: optical and motor factors. J Exp Psychol 72(5):640–648

    Article  CAS  PubMed  Google Scholar 

  • Heath M (2005) Role of limb and target vision in the online control of memory-guided reaches. Mot Control 9:281–311

    Article  Google Scholar 

  • Heath M, Hodges NJ, Chua R, Elliott D (1998) On-line control of rapid aiming movements: Unexpected target perturbations and movement kinematics. Can J Exp Psychol 52(4):163–173

    Article  Google Scholar 

  • Hinder MR, Riek S, Tresilian JR, de Rugy A, Carson RG (2010) Real-time error detection but not error correction drives automatic visuomotor adaptation. Exp Brain Res 201:191–207

    Article  PubMed  Google Scholar 

  • Huberdeau DM, Haith AM, Krakauer JW (2015a) Formation of a long-term memory for visuomotor adaptation following only a few trials of practice. J Neurophysiol 114(2):969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberdeau DM, Krakauer JW, Haith AM (2015b) Dual-process decomposition in human sensorimotor adaptation. Curr Opin Neurobiol 33:71–77

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M (1986) Are corrections in accurate arm movements corrective? Prog Brain Res 64(C):353–360

    Article  CAS  PubMed  Google Scholar 

  • Kantak SS, Winstein CJ (2012) Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res 228(1):219–231

    Article  PubMed  Google Scholar 

  • Khan MA, Elliott D, Coull J, Chua R, Lyons J (2002) Optimal control strategies under different feedback schedules: kinematic evidence. J Mot Behav 34(1):45–57

    Article  PubMed  Google Scholar 

  • Khan MA, Lawrence G, Fourkas A, Franks IM, Elliott D, Pembroke S (2003) Online versus offline processing of visual feedback in the control of movement amplitude. Acta Physiol (Oxf) 113:83–97

    Google Scholar 

  • Khan MA, Franks IM, Elliott D, Lawrence GP, Chua R, Bernier PM et al (2006) Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neurosci Biobehav Rev 30:1106–1121

    Article  PubMed  Google Scholar 

  • Krakauer JW, Ghilardi M-F, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2(11):1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi M-F, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20(23):8916–8924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leow L-A, Gunn R, Marinovic W, Carroll TJ (2017) Estimating the implicit component of visuomotor rotation learning by constraining movement preparation time. J Neurophysiol 118(2):666–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Maksimovic S, Cressman EK (2018) Long-term retention of proprioceptive recalibration. Neuropsychologia 114(March):65–76

    Article  PubMed  Google Scholar 

  • Mendoza JE, Elliott D, Meegan DV, Lyons JL, Welsh TN (2006) The effect of the Müller-Lyer illusion on the planning and control of manual aiming movements. J Exp Psychol Hum Percept Perform 32(2):413–422

    Article  PubMed  Google Scholar 

  • McDougle SD, Ivry RB, Taylor JA (2016) Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. Trends Cogn Sci 20(7):535–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: Ideal control of rapid aimed movements. Psychol Rev 95(3):340–370

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Nissen MJ, Klein RM (1976) Visual dominance: an information-processing account of its origins and significance. Psychol Rev 83(2):157–171

    Article  CAS  PubMed  Google Scholar 

  • Redding GM, Wallace B (1996) Adaptive spatial alignment and strategic motor control. J Exp Biol Human Percept Perform 22(2):379–394

    Article  CAS  Google Scholar 

  • Redding GM, Wallace B (2002) Strategic calibration and spatial alignment. J Mot Behav 34(2):126–138

    Article  PubMed  Google Scholar 

  • Redding GM, Wallace B (2006) Generalization of prism adaptation. J Exp Psychol Hum Percept Perform 32(4):1006–1022

    Article  PubMed  Google Scholar 

  • Redding GM, Rossetti Y, Wallace B (2005) Applications of prism adaptation: A tutorial in theory and method. Neurosci Biobehav Rev 29(3):431–444

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: Independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Sarlegna FR, Sainburg RL (2009) The roles of vision and proprioception in the planning of reaching movements. Adv Exp Med Biol 629:317–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt RA, Zelaznik HN, Hawkins B, Frank JS, Quinn JT Jr (1979) Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol Rev 86(5):415–451

    Article  Google Scholar 

  • Scott SH (2016) A functional taxonomy of bottom-up sensory feedback processing for motor actions. Trends Neurosci 39(8):512–526

    Article  CAS  PubMed  Google Scholar 

  • Shabbott BA, Sainburg RL (2010) Learning a visuomotor rotation: Simultaneous visual and proprioceptive information is crucial for visuomotor remapping. Exp Brain Res 203(1):75–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon A, Bock O (2016) Influence of movement kinematics on visuomotor adaptation. Exp Brain Res 234:3083–3090

    Article  PubMed  Google Scholar 

  • Smeets JBJ, van den Dobbelsteen JJ, de Grave DDJ, van Beers RJ, Brenner E (2006) Sensory integration does not lead to sensory calibration. Proc Natl Acad Sci 103(49):18781–18786

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4(6):1035–1043

    Article  CAS  Google Scholar 

  • Taylor JA, Ivry RB (2011) Flexible cognitive strategies during motor learning. PLoS Comput Biol 7(3):e1001096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34(8):3023–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teulings H-L, Contreras-Vidal JL, Stelmach GE, Adler CH (1997) Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol 146(1):159–170

    Article  CAS  PubMed  Google Scholar 

  • Tremblay L, Hansen S, Kennedy A, Cheng DT (2013) The utility of vision during action: multiple visuomotor processes? J Mot Behav 45(2):91–99

    Article  PubMed  Google Scholar 

  • Tseng Y-W, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98(1):54–62

    Article  PubMed  Google Scholar 

  • van der Kooij K, Brenner E, Van Beers RJ, Smeets JBJ (2015) Visuomotor adaptation: how forgetting keeps us conservative. PLoS One 10(2):1–13

    Google Scholar 

  • Walsh CM, Ling SC, Wang CS, Carnahan H (2009) Concurrent versus terminal feedback: it may be better to wait. Acad Med 84(10):S54–S57

    Article  PubMed  Google Scholar 

  • Wang J, Lei Y (2015) Direct-effects and after-effects of visuomotor adaptation with one arm on subsequent performance with the other arm. J Neurophysiol 114(1):468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Woodworth RS (1899) The best movement for handwriting author(s. Sci New Ser 10(254):679–681

    Google Scholar 

  • Yamamoto K, Hoffman DS, Strick PL (2006) Rapid and long-lasting plasticity of input-output mapping. J Neurophysiol 96:2797–2801

    Article  PubMed  Google Scholar 

  • Zbib B, Henriques DYP, Cressman EK (2016) Proprioceptive recalibration arises slowly compared to reach adaptation. Exp Brain Res 234:2201–2213

    Article  PubMed  Google Scholar 

  • Zelaznik HN, Hawkins B, Kisselburgh L (1983) Rapid visual feedback processing in single-aiming movements. J Mot Behav 15(3):217–236

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Natural Sciences and Engineering Research Council of Canada awarded to Erin K. Cressman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin K. Cressman.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijeyaratnam, D.O., Chua, R. & Cressman, E.K. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment. Exp Brain Res 237, 1431–1444 (2019). https://doi.org/10.1007/s00221-019-05515-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05515-0

Keywords

Navigation