Skip to main content

Advertisement

Log in

The influence of phasic alerting on multisensory temporal precision

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The relationship between attention and multisensory integration has attracted the attention of many researchers but remains a topic of debate. As a mechanism that regulates the intensity of attention, little is known regarding whether and how phasic alerting affects multisensory perception. Three experiments and warning cues were employed to investigate the influence of phasic alerting on multisensory temporal processing. Experiments 1 and 2 used a temporal order judgement task and a simultaneity judgement task with audiovisual target stimuli presented at varying stimulus onset asynchronies. Experiment 3 further adopted a dual task to generate a new estimate of participants’ performance. Although these tasks differ in terms of the required cognitive mechanisms, decreased just noticeable difference scores in trials with warning cues consistently indicated that participants under phasic alerting had enhanced multisensory temporal precision. The point of subjective simultaneity values differed among the three tasks, suggesting that the influence of phasic alerting on perceptual deviation might be modulated by specific task demands. Experiment 4 adopted a strict method to verify that the mechanisms by which warning cues facilitate multisensory temporal precision are most likely transient general arousal rather than temporal expectancy. There is a close relationship between multisensory integration and some neurodevelopmental disorders. Considering that phasic alerting may heighten attentional capacity, future research could explore the potential medical interventions for the patients with relatively limited attention resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alsius A, Navarra J, Campbell R, Soto-Faraco S (2005) Audiovisual integration of speech falters under high attention demands. Curr Biol 15:839

    CAS  PubMed  Google Scholar 

  • Antonerxleben K, Abrams J, Carrasco M (2010) Evaluating comparative and equality judgments in contrast perception: attention alters appearance. J Vis 10:6

    Google Scholar 

  • Arnold DH, Johnston A, Nishida S (2005) Timing sight and sound. Vis Res 45:1275–1284

    PubMed  Google Scholar 

  • Bausenhart KM, Rolke B, Ulrich R (2008) Temporal preparation improves temporal resolution: evidence from constant foreperiods. Atten Percept Psychophys 70:1504–1514

    Google Scholar 

  • Bertelson P, Vroomen J, Gelder BD, Driver J (2000) The ventriloquist effect does not depend on the direction of deliberate visual attention. Percept Psychophys 62:321–332

    CAS  PubMed  Google Scholar 

  • Boerschellekens LD, Eussen M, Vroomen J (2013) Diminished sensitivity of audiovisual temporal order in autism spectrum disorder. Front Integr Neurosci 7:8

    Google Scholar 

  • Botta F, Lupiáñez J, Chica AB (2014) When endogenous spatial attention improves conscious perception: effects of alerting and bottom-up activation. Conscious Cogn 23:63–73

    PubMed  Google Scholar 

  • Botta F, Ródenas E, Chica AB (2017) Target bottom-up strength determines the extent of attentional modulations on conscious perception. Exp Brain Res 235:2109–2124

    PubMed  Google Scholar 

  • Callejas A, Lupiàñez J, Funes MJ, Tudela P (2005) Modulations among the alerting, orienting and executive control networks. Exp Brain Res 167:27–37

    PubMed  Google Scholar 

  • Chica AB, Bayle DJ, Botta F, Bartolomeo P, Paz-Alonso PM (2016) Interactions between phasic alerting and consciousness in the fronto-striatal network. Sci Rep 6:31868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chun MM, Marois R (2002) The dark side of visual attention. Curr Opin Neurobiol 12:184–189

    CAS  PubMed  Google Scholar 

  • Correa A, Sanabria D, Spence C, Tudela P, Lupiáñez J (2006) Selective temporal attention enhances the temporal resolution of visual perception: evidence from a temporal order judgment task. Brain Res 1070:202–205

    CAS  PubMed  Google Scholar 

  • Correa A, Cappucci P, Nobre AC, Lupiáñez J (2010) The two sides of temporal orienting: facilitating perceptual selection, disrupting response selection. Exp Psychol 57:142–148

    PubMed  Google Scholar 

  • Coull JT, Nobre AC, Frith CD (2001) The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 11:73–84

    CAS  PubMed  Google Scholar 

  • Dean CL, Eggleston BA, Gibney KD, Aligbe E, Blackwell M, Kwakye LD (2017) Auditory and visual distractors disrupt multisensory temporal acuity in the crossmodal temporal order judgment task. PLoS One 12:e0179564

    PubMed  PubMed Central  Google Scholar 

  • Dehaene S, Changeux JP (2005) Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol 3:e141

    PubMed  PubMed Central  Google Scholar 

  • Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10:204

    PubMed  Google Scholar 

  • Dolores DLRM, Daniel S, Mariagrazia C, Angel C (2012) Temporal preparation driven by rhythms is resistant to working memory interference. Front Psychol 3:308

    Google Scholar 

  • Donohue SE, Green JJ, Woldorff MG (2015) The effects of attention on the temporal integration of multisensory stimuli. Front Integr Neurosci 9:32

    PubMed  PubMed Central  Google Scholar 

  • Eskes GA, Klein RM, Dove MB, Coolican J, Shore DI (2007) Comparing temporal order judgments and choice reaction time tasks as indices of exogenous spatial cuing. J Neurosci Methods 166:259–265

    PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    PubMed  Google Scholar 

  • Fossfeig JH, Kwakye LD, Cascio CJ, Burnette CP, Kadivar H, Stone WL, Wallace MT (2010) An extended multisensory temporal binding window in autism spectrum disorders. Exp Brain Res 203:381

    Google Scholar 

  • Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7:773

    CAS  PubMed  Google Scholar 

  • Garcíapérez MA, Alcaláquintana R (2012) On the discrepant results in synchrony judgment and temporal-order judgment tasks: a quantitative model. Psychon Bull Rev 19:820–846

    Google Scholar 

  • García-Pérez MA, Alcalá-Quintana R (2013) Shifts of the psychometric function: distinguishing bias from perceptual effects. Q J Exp Psychol 66:319–337

    Google Scholar 

  • Gliksman Y, Weinbach N, Henik A (2016) Alerting cues enhance the subitizing process. Acta Physiol (Oxf) 170:139–145

    Google Scholar 

  • Hackley SA, Langner R, Rolke B, Erb M, Grodd W, Ulrich R (2009) Separation of phasic arousal and expectancy effects in a speeded reaction time task via fMRI. Psychophysiology 46:163–171

    PubMed  Google Scholar 

  • Hairston WD, Burdette JH, Flowers DL, Wood FB, Wallace MT (2005) Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Exp Brain Res 166:474–480

    PubMed  Google Scholar 

  • Hartcher-O’Brien J, Talsma D, Adam R, Vercillo T, Macaluso E, Noppeney U (2016) The curious incident of attention in multisensory integration: bottom-up vs. top-down. Multisens Res 29:557–583

    Google Scholar 

  • Hartcher-O’Brien J, Sotofaraco S, Adam R (2017) Editorial: a matter of bottom-up or top-down processes: the role of attention in multisensory integration. Front Integr Neurosci 11:5

    PubMed  PubMed Central  Google Scholar 

  • Heron J, Whitaker D, Mcgraw PV, Horoshenkov KV (2007) Adaptation minimizes distance-related audiovisual delays. J Vis 7:1–8

    PubMed  Google Scholar 

  • Heywood J (2011) Efficacy of alertness training in a case of brainstem encephalitis: clinical and theoretical implications. Neuropsychol Rehabil 21:164–182

    Google Scholar 

  • Ikumi N, Soto-Faraco S (2014) Selective attention modulates the direction of audio-visual temporal recalibration. PLoS One 9:e99311

    PubMed  PubMed Central  Google Scholar 

  • Keetels M, Vroomen J (2005) The role of spatial disparity and hemifields in audio-visual temporal order judgments. Exp Brain Res 167:635–640

    PubMed  Google Scholar 

  • Laurienti PJ, Burdette JH, Maldjian JA, Wallace MT (2006) Enhanced multisensory integration in older adults. Neurobiol Aging 27:1155–1163

    PubMed  Google Scholar 

  • Lewald J, Guski R (2004) Auditory-visual temporal integration as a function of distance: no compensation for sound-transmission time in human perception. Neurosci Lett 357:119–122

    CAS  PubMed  Google Scholar 

  • Li Q, Liu P, Huang S, Huang X (2017) The effect of phasic alertness on temporal precision. Atten Percept Psychophys 2:1–13

    Google Scholar 

  • Linares D, Holcombe AO (2014) Differences in perceptual latency estimated from judgments of temporal order, simultaneity and duration are inconsistent. Iperception 5:559–571

    PubMed  PubMed Central  Google Scholar 

  • Love SA, Petrini K, Cheng A, Pollick FE (2013) A psychophysical investigation of differences between synchrony and temporal order judgments. PLoS One 8:e54798–e54798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Wei W, Cai Y (2015) Temporal expectancy modulates phasic alerting in both detection and discrimination tasks. Psychon Bull Rev 22:235–241

    PubMed  Google Scholar 

  • Maier JX, Di LM, Noppeney U (2011) Audiovisual asynchrony detection in human speech. J Exp Psychol Hum Percept Perform 37:245–256

    PubMed  Google Scholar 

  • Matthews N, Welch L, Achtman R, Fenton R, Fitzgerald B (2016) Simultaneity and temporal order judgments exhibit distinct reaction times and training effects. PLoS One 11:e0145926

    PubMed  PubMed Central  Google Scholar 

  • Mégevand P, Molholm S, Nayak A, Foxe JJ (2013) Recalibration of the multisensory temporal window of integration results from changing task demands. PLoS One 8:e71608

    PubMed  PubMed Central  Google Scholar 

  • Mozolic JL, Hugenschmidt CE, Peiffer AM, Laurienti PJ (2008) Modality-specific selective attention attenuates multisensory integration. Exp Brain Res 184:39–52

    PubMed  Google Scholar 

  • Nicholls ME, Lew M, Loetscher T, Yates MJ (2011) The importance of response type to the relationship between temporal order and numerical magnitude. Atten Percept Psychophys 73:1604–1613

    PubMed  Google Scholar 

  • Niemi P, Näätänen R (1981) Foreperiod and simple reaction time. Psychol Bull 89:133–162

    Google Scholar 

  • Oruc I, Sinnett S, Bischof WF, Sotofaraco S, Lock K, Kingstone A (2008) The effect of attention on the illusory capture of motion in bimodal stimuli. Brain Res 1242:200–208

    CAS  PubMed  Google Scholar 

  • Parise C, Spence C (2008) Synesthetic congruency modulates the temporal ventriloquism effect. Neurosci Lett 442:257–261

    CAS  PubMed  Google Scholar 

  • Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen A, Petersen AH, Bundesen C, Vangkilde S, Habekost T (2017) The effect of phasic auditory alerting on visual perception. Cognition 165:73–81

    PubMed  Google Scholar 

  • Raz A, Buhle J (2006) Typologies of attentional networks. Nat Rev Neurosci 7:367–379

    CAS  PubMed  Google Scholar 

  • Robertson IH, Mattingley JB, Rorden C, Driver J (1998) Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395:169–172

    CAS  PubMed  Google Scholar 

  • Rolke B, Hofmann P (2007) Temporal uncertainty degrades perceptual processing. Psychon Bull Rev 14:522–526

    PubMed  Google Scholar 

  • Sanders MC, Chang NY, Hiss MM, Uchanski RM, Hullar TE (2011) Temporal binding of auditory and rotational stimuli. Exp Brain Res 210:539–547

    PubMed  Google Scholar 

  • Schneider KA, Bavelier D (2004) Components of visual prior entry. Cogn Psychol 47:333–366

    Google Scholar 

  • Seibold VC, Bausenhart KM, Rolke B, Ulrich R (2011) Does temporal preparation increase the rate of sensory information accumulation? Acta Physiol (Oxf) 137:56–64

    Google Scholar 

  • Seifried T, Ulrich R, Bausenhart KM, Rolke B, Osman A (2010) Temporal preparation decreases perceptual latency: evidence from a clock paradigm. Q J Exp Psychol 63:2432–2451

    Google Scholar 

  • Setti A, Stapleton J, Leahy D, Walsh C, Kenny RA, Newell FN (2014) Improving the efficiency of multisensory integration in older adults: audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion. Neuropsychologia 61:259

    PubMed  Google Scholar 

  • Shore DI, Spence C, Klein RM (2001) Visual prior entry. Psychol Sci 12:205–212

    CAS  PubMed  Google Scholar 

  • Spence CVP, Charles (2009) ‘When birds of a feather flock together’: synesthetic correspondences modulate audiovisual integration in non-synesthetes. PLoS One 4:e5664

    PubMed  PubMed Central  Google Scholar 

  • Spence C, Parise C (2010) Prior-entry: a review. Conscious Cogn 19:364–379

    PubMed  Google Scholar 

  • Spence C, Shore DI, Klein RM (2001) Multisensory prior entry. J Exp Psychol Gen 130:799–832

    CAS  PubMed  Google Scholar 

  • Steinborn MB, Langner R (2012) Arousal modulates temporal preparation under increased time uncertainty: evidence from higher-order sequential foreperiod effects. Acta Psychol 139:65–76

    Google Scholar 

  • Stevenson RA, Wallace MT (2013) Multisensory temporal integration: task and stimulus dependencies. Exp Brain Res 227:249–261

    PubMed  PubMed Central  Google Scholar 

  • Stevenson RA, Wallace MT, Nicholas A (2014) The interaction between stimulus factors and cognitive factors during multisensory integration of audiovisual speech. Front Psychol 5:352

    PubMed  PubMed Central  Google Scholar 

  • Sturm W, Willmes K (2001) On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14:S76–S84

    CAS  PubMed  Google Scholar 

  • Talsma D, Senkowski D, Sotofaraco S, Woldorff MG (2010) The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci 14:400

    PubMed  PubMed Central  Google Scholar 

  • Tiippana K, Andersen TS, Sams M (2004) Visual attention modulates audiovisual speech perception. Eur J Cogn Psychol 16:457–472

    Google Scholar 

  • Titchener EB (1908) Lectures on the elementary psychology of feeling and attention. Macmillan, New York, NY

    Google Scholar 

  • Vallesi A (2010) Neuro-anatomical substrates of foreperiod effects. In: Nobre A, Coull J (eds) Attention and time. Oxford University Press, Oxford, pp 303–316

    Google Scholar 

  • Vallesi A, Shallice T, Walsh V (2007) Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cereb Cortex 17:466–474

    PubMed  Google Scholar 

  • van Eijk RL, Kohlrausch A, Juola JF, Van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Atten Percept Psychophys 70:955–968

    Google Scholar 

  • Van Vleet TM, Chen A, Vernon A, Novakovicagopian T, D’Esposito MT (2014) Tonic and phasic alertness training: a novel treatment for executive control dysfunction following mild traumatic brain injury. Neurocase 21:489–498

    PubMed  Google Scholar 

  • Van Vleet TM, Degutis JM, Merzenich MM, Simpson GV, Zomet A, Dabit S (2016) Targeting alertness to improve cognition in older adults: a preliminary report of benefits in executive function and skill acquisition. Cortex 82:100–118

    PubMed  PubMed Central  Google Scholar 

  • Vatakis A, Bayliss L, Zampini M, Spence C (2007) The influence of synchronous audiovisual distractors on audiovisual temporal order judgments. Percept Psychophys 69:298–309

    PubMed  Google Scholar 

  • Vercillo T, Gori M (2015) Attention to sound improves auditory reliability in audio-tactile spatial optimal integration. Front Integr Neurosci 9:34

    PubMed  PubMed Central  Google Scholar 

  • Vroomen J, Keetels M (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72:871–884

    PubMed  Google Scholar 

  • Wallace MT, Stevenson RA (2014) The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 64:105

    PubMed  PubMed Central  Google Scholar 

  • Weinbach N, Henik A (2013) The interaction between alerting and executive control: dissociating phasic arousal and temporal expectancy. Atten Percept Psychophys 75:1374–1381

    PubMed  Google Scholar 

  • Wiegand I, Petersen A, Finke K, Bundesen C, Lansner J, Habekost T (2017) Behavioral and brain measures of phasic alerting effects on visual attention. Front Hum Neurosci 11:176

    PubMed  PubMed Central  Google Scholar 

  • Witte EA, Marrocco RT (1997) Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 132:315–323. https://doi.org/10.1007/s002130050351

    Article  CAS  PubMed  Google Scholar 

  • Yanaka HT, Saito DN, Uchiyama Y, Sadato N (2010) Neural substrates of phasic alertness: a functional magnetic resonance imaging study. Neurosci Res 68:51–58

    PubMed  Google Scholar 

  • Yarrow K, Jahn N, Durant S, Arnold DH (2011) Shifts of criteria or neural timing? The assumptions underlying timing perception studies. Conscious Cogn 20:1518–1531

    PubMed  Google Scholar 

  • Yarrow K, Martin SE, Di CS, Solomon JA, Arnold DH (2016) A roving dual-presentation simultaneity-judgment task to estimate the point of subjective simultaneity. Front Psychol 7:416

    PubMed  PubMed Central  Google Scholar 

  • Yates MJ, Nicholls MER (2009) Somatosensory prior entry. Atten Percept Psychophys 71:847–859

    PubMed  Google Scholar 

  • Yates MJ, Nicholls MER (2011) Somatosensory prior entry assessed with temporal order judgments and simultaneity judgments. Atten Percept Psychophys 73:1586–1603

    PubMed  Google Scholar 

  • Zampini M, Shore DI, Spence C (2005) Audiovisual prior entry. Neurosci Lett 381:217–222

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31600879), General Financial Grant from the China Postdoctoral Science Foundation (2015M582488), the Fundamental Research Funds for the Central Universities (SWU1509450; SWU1509451), the Grant from the Mechanism and Application of Temporal Range/Synthetic Model (TR201201-1), the Base Project of Humanities and Social Sciences Research of Chongqing (16SKB009), and the Special Grant of Postdoctoral Research Project of Chongqing (Xm2016088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiting Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Appendix

Appendix

See Tables 1, 2, 3 and 4.

Table 1 The derived data of the TOJ task
Table 2 The derived data of the SJ task
Table 3 The derived data of the dual task
Table 4 The derived data of the revised TOJ task

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, P., Huang, S. et al. The influence of phasic alerting on multisensory temporal precision. Exp Brain Res 236, 3279–3296 (2018). https://doi.org/10.1007/s00221-018-5372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5372-6

Keywords

Navigation