Skip to main content
Log in

Neurons in the crow nidopallium caudolaterale encode varying durations of visual working memory periods

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Adaptive sequential behaviors rely on the bridging and integration of temporally separate information for the realization of prospective goals. Corvids’ remarkable behavioral flexibility is thought to depend on the workings of the nidopallium caudolaterale (NCL), a high-level avian associative forebrain area. We trained carrion crows to remember visual items for three alternating delay durations in a delayed match-to-sample task and recorded single-unit activity from the NCL. Sample-selective delay activity, a correlate of visual working memory, was maintained throughout different working memory durations. Delay responses remained selective for the same preferred sample item across blocks with different delay durations. However, selectivity strength decreased with increasing delay durations, mirroring worsened behavioral performance with longer memory delays. Behavioral relevance of delay activity was further evidenced by reduced encoding of the preferred sample item during error trials. In addition, NCL neurons adapted their time-dependent discharges to blocks of different memory durations, so that delay duration could be successfully classified based on population activity a few trials after the delay duration switched. Therefore, NCL neurons not only maintain information from individual trials, but also keep track of the duration for which this information is needed in the context of the task. These results strengthen the role of corvid NCL in maintaining working memory for flexible control of temporally extended goal-directed behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barak O, Tsodyks M, Romo R (2010) Neuronal population coding of parametric working memory. J Neurosci 30:9424–9430

    Article  CAS  PubMed  Google Scholar 

  • Barak O, Sussillo D, Romo R, Tsodyks M, Abbott LF (2013) From fixed points to chaos: three models of delayed discrimination. Prog Neurobiol 103:214–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Bermudez MA, Schultz W (2014) Timing in reward and decision processes. Philos Trans R Soc B 369:20120468

    Article  Google Scholar 

  • Brecht KF, Wagener L, Ostojić L, Clayton NS, Nieder A (2016) Comparing the face inversion effect in crows and humans. J Comp Physiol A. https://doi.org/10.1007/s00359-017-1211-7

    Google Scholar 

  • Brody CD, Hernández A, Zainos A, Romo R (2003) Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex 13:1196–1207

    Article  PubMed  Google Scholar 

  • Browning R, Overmier JB, Colombo M (2010) Delay activity in avian prefrontal cortex—sample code or reward code? Eur J Neurosci 33:726–735

    Article  PubMed  Google Scholar 

  • Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theor 13:21–27. https://doi.org/10.1109/TIT.1967.1053964

    Article  Google Scholar 

  • Diekamp B, Kalt T, Güntürkün O (2002) Working memory neurons in pigeons. J Neurosci 22:RC210

    PubMed  Google Scholar 

  • Ditz HM, Nieder A (2015) Neurons selective to the number of visual items in the corvid songbird endbrain. Proc Natl Acad Sci USA 112:7827–7832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditz HM, Nieder A (2016a) Numerosity representations in crows obey the Weber–Fechner law. Proc Biol Sci 283(1827):20160083

    Article  PubMed  PubMed Central  Google Scholar 

  • Ditz HM, Nieder A (2016b) Sensory and working memory representations of small and large numerosities in the crow endbrain. J Neurosci 36:12044–12052

    Article  CAS  PubMed  Google Scholar 

  • Divac I, Mogensen J, Björklund A (1985) The prefrontal “cortex” in the pigeon. Biochemical evidence. Brain Res 332:365–368

    Article  CAS  PubMed  Google Scholar 

  • Durstewitz D, Kröner S, Güntürkün O (1999) The dopaminergic innervation of the avian telencephalon. Prog Neurobiol 59:161–195

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–78

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30:319–333

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (2008) The prefrontal cortex, 4th edn. Academic Press, New York

    Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  CAS  PubMed  Google Scholar 

  • Genovesio A, Tsujimoto S, Wise SP (2006) Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol 95:3281–3285

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghose GM, Maunsell JHR (2002) Attentional modulation in visual cortex depends on task timing. Nature 419:616–620

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Watanabe S (2009) Visual working memory of jungle crows (Corvus macrorhynchos) in operant delayed matching-to-sample. Jpn Psychol Res 51:122–131

    Article  Google Scholar 

  • Güntürkün O (2005) The avian “prefrontal cortex” and cognition. Curr Opin Neurobiol 15:686–693

    Article  PubMed  Google Scholar 

  • Hartmann B, Güntürkün O (1998) Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: possible behavioral equivalencies to the mammalian prefrontal system. Behav Brain Res 96:125–133

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Rüttler V, Nieder A (2011) Ontogeny of object permanence and object tracking in the carrion crow, Corvus corone. Anim Behav 82:359–367

    Article  Google Scholar 

  • Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8:234–241

    Article  CAS  PubMed  Google Scholar 

  • Kalenscher T, Windmann S, Diekamp B, Rose J, Güntürkün O, Colombo M (2005) Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Curr Biol 15:594–602

    Article  CAS  PubMed  Google Scholar 

  • Kalenscher T, Ohmann T, Windmann S, Freund N, Güntürkün O (2006) Single forebrain neurons represent interval timing and reward amount during response scheduling. Eur J Neurosci 24:2923–2931

    Article  PubMed  Google Scholar 

  • Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon: (Columba livia). Johns Hopkins Press, Baltimore

    Google Scholar 

  • Kojima S, Goldman-Rakic PS (1982) Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res 248:43–49

    Article  CAS  PubMed  Google Scholar 

  • Lengersdorf D, Pusch R, Güntürkün O, Stüttgen MC (2014) Neurons in the pigeon nidopallium caudolaterale signal the selection and execution of perceptual decisions. Eur J Neurosci 40:3316–3327

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167

    CAS  PubMed  Google Scholar 

  • Mogensen J, Divac I (1993) Behavioural effects of ablation of the pigeon-equivalent of the mammalian prefrontal cortex. Behav Brain Res 55:101–107

    Article  CAS  PubMed  Google Scholar 

  • Moll FW, Nieder A (2014) The long and the short of it: rule-based relative length discrimination in carrion crows, Corvus corone. Behav Process 107:142–149

    Article  Google Scholar 

  • Moll FW, Nieder A (2015) Cross-modal associative mnemonic signals in crow endbrain neurons. Curr Biol 25:2196–2201

    Article  CAS  PubMed  Google Scholar 

  • Moll FW, Nieder A (2017) Modality-invariant audio-visual association coding in crow endbrain neurons. Neurobiol Learn Mem 137:65–76

    Article  PubMed  Google Scholar 

  • Nieder A (2016) The neuronal code for number. Nat Rev Neurosci 17:366–382

    Article  CAS  PubMed  Google Scholar 

  • Nieder A (2017) Inside the corvid brain—probing the physiology of cognition in crows. Curr Opin Behav Sci 16:8–14

    Article  Google Scholar 

  • Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res 171:213–224

    Article  CAS  PubMed  Google Scholar 

  • Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19:5493–5505

    CAS  PubMed  Google Scholar 

  • Roesch MR, Olson CR (2005) Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. J Neurophysiol 94:1469–1497

    Article  PubMed  Google Scholar 

  • Sakurai Y, Takahashi S, Inoue M (2004) Stimulus duration in working memory is represented by neuronal activity in the monkey prefrontal cortex. Eur J Neurosci 20:1069–1080

    Article  PubMed  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Ann Rev Psychol 57:87–115. https://doi.org/10.1146/annurev.psych.56.091103.070229

    Article  Google Scholar 

  • Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J (2013) Dynamic coding for cognitive control in prefrontal cortex. Neuron 78:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugase-Miyamoto Y, Liu Z, Wiener MC, Optican LM, Richmond BJ (2008) Short-term memory trace in rapidly adapting synapses of inferior temporal cortex. PLoS Comput Biol 4(5):e1000073

    Article  PubMed  PubMed Central  Google Scholar 

  • Veit L, Nieder A (2013) Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat Commun 4:2878

    Article  PubMed  Google Scholar 

  • Veit L, Hartmann K, Nieder A (2014) Neuronal correlates of visual working memory in the corvid endbrain. J Neurosci 34:7778–7786

    Article  CAS  PubMed  Google Scholar 

  • Veit L, Pidpruzhnykova G, Nieder A (2015) Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proc Natl Acad Sci USA 112:15208–15213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veit L, Hartmann K, Nieder A (2017a) Spatially-tuned neurons in corvid nidopallium caudolaterale signal target position during visual search. Cereb Cortex 27:1103–1112

    PubMed  Google Scholar 

  • Veit L, Pidpruzhnykova G, Nieder A (2017b) Learning recruits neurons representing previously established associations in the corvid endbrain. J Cogn Neurosci 29:1712–1724

    Article  PubMed  Google Scholar 

  • Wagener L, Nieder A (2017) Encoding of global visual motion in the Nidopallium caudolaterale of behaving crows. Eur J Neurosci 45:267–277

    Article  PubMed  Google Scholar 

  • White KG (1985) Characteristics of forgetting functions in delayed matching-to-sample. J Exp Anal Behav 45:161–174

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Ph.D. fellowship from the German National Academic Foundation to L.V. and by a DFG Grant NI 618/6-1 to A.N.

Author information

Authors and Affiliations

Authors

Contributions

KH and AN designed experiments, KH performed experiments, KH and LV analyzed data, and LV, KH, and AN wrote the paper.

Corresponding author

Correspondence to Andreas Nieder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, K., Veit, L. & Nieder, A. Neurons in the crow nidopallium caudolaterale encode varying durations of visual working memory periods. Exp Brain Res 236, 215–226 (2018). https://doi.org/10.1007/s00221-017-5120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5120-3

Keywords

Navigation