Skip to main content
Log in

Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlgren SC, Thakur V, Bronner-Fraser M (2002) Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci USA 99:10476–10481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Champagne DL, Alia A, Richardson MK (2011) Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience. PLoS ONE 6:e20037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoto K, Shikata Y, Higashiyama D, Shiota K, Motoyama J (2008) Fetal ethanol exposure activates protein kinase A and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth Defects Res (Part A) 82:224–231

    Article  CAS  Google Scholar 

  • Arenzana FJ, Carvan MJ 3rd, Aijon J, Sanchez-Gonzalez R, Arevalo R, Porteros A (2006) Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicol Teratol 28:342–348

    Article  CAS  PubMed  Google Scholar 

  • Aronne MP, Evrard SG, Mirochnic S, Brusco A (2008) Prenatal ethanol exposure reduces the expression of the transcription factor Pax6 in the developing rat brain. Ann N Y Acad Sci 1139:478–498

    Article  CAS  PubMed  Google Scholar 

  • Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6:69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan T, Bowell R, O’Keefe M, Lanigan B (1991) Ocular manifestations in fetal alcohol syndrome. Br J Ophthalmol 75:524–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi C, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    Article  CAS  PubMed  Google Scholar 

  • Clarren SK, Alvord EC Jr, Sumi SM, Streissguth AP, Smith DW (1978) Brain malformations related to prenatal exposure to ethanol. J Pediatr 92:64–67

    Article  CAS  PubMed  Google Scholar 

  • Coffey CM, Solleveld PA, Fang J, Roberts AK, Hong SK, Dawid IB, Laverriere CE, Glasgow E (2013) Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons. PLoS One 8:e53991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cragg BG, Phillips SC (1985) Natural loss of Purkinje cells during development and increased loss with alcohol. Brain Res 325:151–160

    Article  CAS  PubMed  Google Scholar 

  • Dangata YY, Kaufman MH (1997) Morphometric analysis of the postnatal mouse optic nerve following prenatal exposure to alcohol. J Anat 19:49–56

    Article  Google Scholar 

  • Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156

    Article  CAS  PubMed  Google Scholar 

  • Duester G (1991) A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol Clin Exp Res 15:568–572

    Article  CAS  PubMed  Google Scholar 

  • Eberhart JK, Parnell SE (2016) The genetics of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 40:1154–1165

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodlett CR, Marcussen BL, West JR (1990) A single day of alcohol exposure during the brain growth spurt induces brain weight restriction and cerebellar Purkinje cell loss. Alcohol 7:107–114

    Article  CAS  PubMed  Google Scholar 

  • Hard ML, Abdolell M, Robinson BH, Koren G (2005) Gene-expression analysis after alcohol exposure in the developing mouse. J Lab Clin Med 145:47–54

    Article  CAS  PubMed  Google Scholar 

  • Jaszai J, Reifers F, Picker A, Langenberg T, Brand M (2003) Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity. Development 130:6611–6623

    Article  CAS  PubMed  Google Scholar 

  • Joya X, Garcia-Algar O, Vall O, Pujades C (2014) Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD. PLoS One 10:e112851

    Article  Google Scholar 

  • Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Liu IH, Song Y, Lee JA, Halfter W, Balice-Gordon RJ, Linney E, Cole GJ (2007) Agrin is required for posterior development and motor axon outgrowth and branching in embryonic zebrafish. Glycobiology 17:231–247

    Article  CAS  PubMed  Google Scholar 

  • Kot-Leibovich H, Fainsod A (2009) Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis Model Mech 2:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh CK, DiPette DD, Singh US (2010) Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 34:928–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leo MA, Lieber CS (1999) Alcohol, vitamin A, and beta-carotene: adverse interactions, including hepatotoxicity and carcinogenicity. Am J Clin Nutr 69:1071–1085

    CAS  PubMed  Google Scholar 

  • Li YX, Yang HT, Zdanowicz M, Sicklick JK, Qi Y, Camp TJ, Diehl AM (2007) Fetal alcohol exposure impairs Hedgehog cholesterol modification and signaling. Lab Invest 87:231–240

    Article  CAS  PubMed  Google Scholar 

  • Liu IH, Zhang C, Kim MJ, Cole GJ (2008) Retina development in zebrafish requires the heparan sulfate proteoglycan agrin. Dev Neurobiol 68:877–898

    Article  CAS  PubMed  Google Scholar 

  • Loucks EJ, Ahlgren SC (2009) Deciphering the role of Shh signaling in axial defects produced by ethanol exposure. Birth Defects Res (Part A) 85:556–567

    Article  CAS  Google Scholar 

  • Marrs JA, Clendenon SG, Ratcliffe DR, Fielding SM, Liu Q, Bosron WF (2010) Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol 44:707–715

    Article  CAS  PubMed  Google Scholar 

  • Mattson SN, Riley EP (1996) Brain anomalies in fetal alcohol syndrome. In: Abel EL (ed) Fetal alcohol syndrome: from mechanism to prevention. CRC Press, Boca Raton, pp 50–68

    Google Scholar 

  • McCarthy N, Wetherill L, Lovely CB, Swartz ME, Foroud TM, Eberhart JK (2013) Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD. Development 140:3254–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122:3785–3797

    CAS  PubMed  Google Scholar 

  • Moens CB, Prince VE (2002) Constructing the hindbrain: insights from zebrafish. Dev Dyn 224:1–17

    Article  PubMed  Google Scholar 

  • Muralidharan P, Sarmah S, Marrs JA (2015) Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 49:149–163

    Article  CAS  PubMed  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Yang PH, Ng SS, Wong OG, Liu J, He ML, Kung HF, Lin MC (2004) A critical role of Pax6 in alcohol-induced fetal microcephaly. Neurobiol Dis 16:370–376

    Article  CAS  PubMed  Google Scholar 

  • Pera EM, Kim JI, Martinez SL, Brechner M, Li SY, Wessely O, De Robertis EM (2002) Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer. Mech Dev 16:169–172

    Article  Google Scholar 

  • Pillarkat RK (1991) Hypothesis: prenatal ethanol-induced birth defects and retinoic acid. Alcohol Clin Exp Res 15:565–567

    Article  Google Scholar 

  • Rubert G, Minana R, Pascual M, Guerri C (2006) Ethanol exposure during embryogenesis decreases the radial glial progenitor pool and affects the generation of neurons and astrocytes. J Neurosci Res 84:483–496

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Joyner AL (2009) The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development 136:3617–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromland K (1985) Ocular abnormalities in the fetal alcohol syndrome. Acta Ophthamol Suppl 171:1–50

    CAS  Google Scholar 

  • Stromland K, Pinazo-Duran MD (1994) Optic nerve hypoplasia: comparative effects in children and rats exposed to alcohol during pregnancy. Teratology 50:100–111

    Article  CAS  PubMed  Google Scholar 

  • Sulik KK, Johnston MC, Webb MA (1981) Fetal alcohol syndrome: embryogenesis in a mouse model. Science 214:936–938

    Article  CAS  PubMed  Google Scholar 

  • Swartz ME, Wells MB, Griffin M, McCarthy N, Lovely CB, McGurk P, Rozacky J, Eberhart JK (2014) A screen of zebrafish mutants identifies ethanol-sensitive genetic loci. Alcohol Clin Exp Res 38:694–703

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Pflumio S, Furthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis (NIH R01 RR15402). ZFIN Direct Data Submission. http://zfin.org

  • Tsen G, Halfter W, Kroger S, Cole GJ (1995) Agrin is a heparan sulfate proteoglycan. J Biol Chem 270:3392–3399

    Article  CAS  PubMed  Google Scholar 

  • Yahyavi M, Abouzeid H, Gawdat G, de Preux AS, Xiao T, Bardakjian T, Schneider A, Choi A, Jorgenson E, Baier H, El Sada M, Schorderet DF, Slavotinek AM (2013) ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 22:3250–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yelin R, Kot H, Yelin D, Fainsod A (2007) Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation 75:393–403

    Article  CAS  PubMed  Google Scholar 

  • Zachman RD, Grummer MA (1998) The interaction of ethanol and vitamin A as a potential mechanism for the pathogenesis of fetal alcohol syndrome. Alcohol Clin Exp Res 22:1544–1556

    Article  CAS  PubMed  Google Scholar 

  • Zamora LY, Lu Z (2013) Alcohol-induced morphological deficits in the development of octavolateral organs of the zebrafish (Danio rerio). Zebrafish 10:52–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Turton QM, MacKinnon S, Sulik KK, Cole GJ (2011) Agrin function associated with ocular development is a target of ethanol exposure in embryonic zebrafish. Birth Defects Res (Part A) 91:129–141

    Article  CAS  Google Scholar 

  • Zhang C, Ojiaku P, Cole GJ (2013) Forebrain and hindbrain development in zebrafish is sensitive to ethanol exposure involving agrin, Fgf, and sonic hedgehog function. Birth Defects Res A Clin Mol Teratol 97:8–27

    Article  PubMed  Google Scholar 

  • Zhang C, Frazier JM, Chen H, Liu Y, Lee JA, Cole GJ (2014) Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages. Neurotoxicol Teratol 44:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Anderson A, Cole GJ (2015) Analysis of crosstalk between retinoic acid and sonic hedgehog pathways following ethanol exposure in embryonic zebrafish. Birth Defects Res A Clin Mol Teratol 103:1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Shanta Mackinnon for zebrafish husbandry. This work was supported by NIH Grant U54 AA019765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Cole.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Boa-Amponsem, O. & Cole, G.J. Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment. Exp Brain Res 235, 2413–2423 (2017). https://doi.org/10.1007/s00221-017-4977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4977-5

Keywords

Navigation