Skip to main content
Log in

Effect of constant, predictable, and unpredictable motor tasks on motor performance and blood markers of stress

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

An unfamiliar or novel physical stimulus induces activation of dopaminergic neurons within the brain and greater activity in areas involved in emotion; considering this, we aimed to establish whether unpredictable prolonged (fatiguing) motor task (vs. constant vs. predictable) evokes greater dopaminergic activity, enhances neuromuscular performance, motor accuracy, and perception of effort, and delays overall central fatigue. Fifteen healthy male volunteers (aged 22 ± 4 years) were required to perform 1 of 3 exercise trials (at least 1 week apart) of 100 intermittent isometric contraction (IIC) tasks involving knee extensions at 60° flexion. Trials were structured differently by simulated contraction intensity. A fatigue task involved 5-s contractions and 20-s rest. Variables measured before, during, and after IIC were electrically induced force, maximal voluntary contraction, central activation ratio, intramuscular temperature, and blood levels of dopamine, cortisol, and prolactin, and intraindividual motor variability and accuracy (constant and absolute error). We found that IIC increased central and peripheral fatigue, force sensation, and T mu, and decreased absolute and constant error without visual feedback, but did not affect motor variability. There were no significant differences between the three IIC tasks. However, only unpredictable tasks increased dopaminergic activity, which was insufficient to affect central motivation to perform isometric exercise and alter centrally mediated components of fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen DG, Lamb GD, Westerblad H (2007) Skeletal Muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  Google Scholar 

  • Aymard C, Baret M, Katz R, Lafitte C, Pénicaud A, Raoul S (2001) Modulation of presynaptic inhibition of la afferents during voluntary wrist flexion and extension in man. Exp Brain Res 137:127–131

    Article  CAS  PubMed  Google Scholar 

  • Bartlett R, Wheat J, Robins M (2007) Is movement variability important for sports biomechanics? Sports Biomech 6:224–243

    Article  PubMed  Google Scholar 

  • Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578:387–396

    Article  CAS  PubMed  Google Scholar 

  • Beaumont A, Hughes J (1979) Biology of opiod peptides. Annu Rev Pharmacol 19:245–267

    Article  CAS  Google Scholar 

  • Berchicci M, Menotti F, Macaluso A, Di Russo F (2013) The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Front Hum Neurosci 7:1–10

    Article  Google Scholar 

  • Bernecke V, Pukenas K, Imbrasiene D, Mickeviciene D, Baranauskiene N, Eimantas N, Brazaitis M (2015) Test-retest cross-reliability of tests to assess neuromuscular function as a multidimensional concept. J Strength Cond Res 29:1972–1984

    Article  PubMed  Google Scholar 

  • Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699

    Article  CAS  PubMed  Google Scholar 

  • Brazaitis M, Skurvydas A (2010) Heat acclimation does not reduce the impact of hyperthermia on central fatigue. Eur J Appl Physiol 109:771–778

    Article  PubMed  Google Scholar 

  • Brazaitis M, Skurvydas A, Vadopalas K, Daniusevičiūtė L, Senikienė Z (2011) The effect of heating and cooling on time course of voluntary and electrically induced muscle force variation. Medicina (Kaunas) 47:39–45

    Google Scholar 

  • Brazaitis M, Skurvydas A, Pukėnas K, Daniuseviciūtė L, Mickevicienė D, Solianik R (2012) The effect of temperature on amount and structure of motor variability during 2-minute maximum voluntary contraction. Muscle Nerve 46:799–809

    Article  PubMed  Google Scholar 

  • Brazaitis M, Eimantas N, Daniuseviciute L, Vitkauskiene A, Paulauskas H, Skurvydas A (2015) Two strategies for the acute response to cold exposure but one strategy for the response to heat stress. Int J Hyperthermia 31:325–335

    Article  CAS  PubMed  Google Scholar 

  • Bridge MW, Weller AS, Rayson M, Jones DA (2003) Responses to exercise in the heat related to measures of hypothalamic serotonergic and dopaminergic function. Eur J Appl Physiol 89:451–459

    Article  CAS  PubMed  Google Scholar 

  • Brümmer V, Schneider S, Abel T, Vogt T, Strüder HK (2011) Brain cortical activity is influenced by exercise mode and intensity. Med Sci Sports Exerc 43:1863–1872

    Article  PubMed  Google Scholar 

  • Chandramouli K, Allen EJ, Williams GN (2011) Effect of knee position on quadriceps muscle force steadiness and activation strategies. Muscle Nerve 43:563–573

    Article  Google Scholar 

  • Chaudhuri A, Behan PO (2004) Fatigue in neurological disorders. Lancet 20:978–988

    Article  Google Scholar 

  • Christou EA, Carlton Les G (2001) Old adults exhibit greater motor output variability than young adults only during rapid discrete isometric contractions. J Gerontol A Biol Sci Med Sci 56:524–532

    Article  Google Scholar 

  • Christou EA, Carlton LG (2002) Age and contraction type influence motor output variability in rapid discrete tasks. J Appl Physiol 93:489–498

    Article  PubMed  Google Scholar 

  • Enoka RM (2008) Motor unit recruitment threshold. J Appl Physiol 105:1676

    Article  PubMed  Google Scholar 

  • Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23

    Article  CAS  PubMed  Google Scholar 

  • Frank TD, Patanarapeelert K, Beek PJ (2008) Portfolio theory of optimal isometric force production: variability predictions and nonequilibrium fluctuation–dissipation theorem. Phys Lett 372:3562–3568

    Article  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Gates DH, Dingwell JB (2008) The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp Brain Res 187:573–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorianovas G, Skurvydas A, Streckis V, Brazaitis M, Kamandulis S, McHugh MP (2013) Repeated bout effect was more expressed in young adult males than in elderly males and boys. Biomed Res Int 218970:10

    Google Scholar 

  • Hackney C (2006) Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab 1:783–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He SB, Tang WG, Tang WJ, Kao XL, Zhang CG, Wong XT (2012) Exercise intervention may prevent depression. Int J Sports Med 33:525–530

    Article  PubMed  Google Scholar 

  • Herbert RD, Gandevia SC (1999) Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol 82:2271–2283

    CAS  PubMed  Google Scholar 

  • Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC (2008) Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Invest 31:587–591

    Article  CAS  PubMed  Google Scholar 

  • Hong SL, Newell KM (2008) Entropy compensation in human motor adaptation. Chaos 18:013108

    Article  PubMed  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–656

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E (2001) Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol 533:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 year. J Appl Physiol 89:81–88

    CAS  PubMed  Google Scholar 

  • Jones KE, de Hamilton FC, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88:1533–1544

    Article  PubMed  Google Scholar 

  • Kent-Braun JA (1999) Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol Occup Physiol 80:57–63

    Article  CAS  PubMed  Google Scholar 

  • Kenney WL, Munce TA (2003) Invited review: aging and human temperature regulation. J Appl Physiol 6:2598–2603

    Article  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67:145–163

    CAS  PubMed  Google Scholar 

  • Low D, Cable T, Purvis A (2005a) Exercise thermoregulation and hyperprolactinaemia. Ergonomics 15:1547–1557

    Article  Google Scholar 

  • Low D, Purvis A, Reilly T, Cable NT (2005b) The prolactin responses to active and passive heating in man. Exp Physiol 90:909–917

    Article  CAS  PubMed  Google Scholar 

  • Marsden JF, Werhahn KJ, Ashby P, Rothwell J, Noachtar S, Brown P (2000) Organization of cortical activities related to movement in humans. J Neurosci 20:2307–2314

    CAS  PubMed  Google Scholar 

  • Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (2006) Central fatigue: the serotonin hypothesis and beyond. Sports Med 36:881–909

    Article  PubMed  Google Scholar 

  • Pethick J, Winter SL, Burnley M (2015) Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man. J Physiol 593.8:2085–2096

    Article  Google Scholar 

  • Roelands B, Hasegawa H, Watson P, Piacentini MF, Buyse L, De Schutter G, Meeusen RR (2008) The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc 40:879–885

    Article  CAS  PubMed  Google Scholar 

  • Roelands B, De Pauw K, Meeusen R (2015) Neurophysiological effects of exercise in the heat. Scand J Med Sci Sports 1:65–78

    Article  Google Scholar 

  • Sadri K, Khani M, Sadri I (2014) Role of central fatigue in resistance and endurance exercises: an emphasis on mechanisms and potential sites. SportLogia 10:65–80

    Article  Google Scholar 

  • Sargeant AJ (1987) Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol Occup Physiol 56:693–698

    Article  CAS  PubMed  Google Scholar 

  • Seidler RD, Noll DC, Thiers G (2004) Feedforward and feedback processes in motor control. NeuroImage 22:1775–1783

    Article  CAS  PubMed  Google Scholar 

  • Selen LP, Beek PJ, van Dieën JH (2007) Fatigue-induced changes of impedance and performance in target tracking. Exp Brain Res 181:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro MB, Gottlieb GL, Corcos DM (2004) EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time. J Neurophysiol 91:2135–2147

    Article  PubMed  Google Scholar 

  • Skriver K, Roig M, Lundbye-Jensen J, Pingel J, Helge JW, Kiens B, Nielsen JB (2014) Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem 116:46–58

    Article  CAS  PubMed  Google Scholar 

  • Skurvydas A, Zachovajevas P (1998) Is post-tetanic potentiation, low frequency fatigue (LFF) and pre-contractile depression (PCD) coexistent in intermittent isometric exercises of maximal intensity? Acta Physiol Scand 164:127–133

    Article  CAS  PubMed  Google Scholar 

  • Skurvydas A, Brazaitis M, Kamandulis S (2010) Prolonged muscle damage depends on force variability. Int J Sports Med 31:77–81

    Article  CAS  PubMed  Google Scholar 

  • Skurvydas A, Brazaitis M, Venckūnas T, Kamandulis S, Stanislovaitis A, Zuoza A (2011) The effect of sports specialization on musculus quadriceps function after exercise-induced muscle damage. Appl Physiol Nutr Metab 36:873–880

    Article  PubMed  Google Scholar 

  • Sokoloff P, Le Foll B (2016) The dopamine D3 receptor, a quarter century later. Eur J Neurosci. doi:10.1111/ejn.13390

    PubMed  Google Scholar 

  • Sosnoff JJ, Newell KM (2006) Aging, visual intermittency, and variability in isometric force output. J Gerontol B Psychol Sci Soc Sci 61:P117–P124

    Article  PubMed  Google Scholar 

  • Stephenson LA, Kolka MA (1993) Thermoregulation in women. Exerc Sport Sci Rev 21:231–262

    Article  CAS  PubMed  Google Scholar 

  • Stergiou N, Moraiti C, Giakas G, Ristanis S, Georgoulis AD (2004) The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee. Clin Biomech Bristol Avon 19:957–963

    Article  Google Scholar 

  • Stergiou N, Harbourne R, Cavanaugh J (2006) Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther 30:120–129

    Article  PubMed  Google Scholar 

  • Taylor AM, Christou EA, Enoka RM (2003) Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J Neurophysiol 90:1350–1361

    Article  PubMed  Google Scholar 

  • Telli O, Cavlak U (2006) Measuring the pain threshold and tolerance using electrical stimulation in patients with Type II diabetes mellitus. J Diabetes Compl 20:308–316

    Article  Google Scholar 

  • Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19:8573–8588

    CAS  PubMed  Google Scholar 

  • Todd G, Butler JE, Taylor JL, Gandevia SC (2005) Hyperthermia: a failure of the motor cortex and the muscle. J Physiol 563:621–631

    Article  CAS  PubMed  Google Scholar 

  • Tracy BL, Mehoudar PD, Ortega JD (2007) The amplitude of force variability is correlated in the knee extensor and elbow flexor muscles. Exp Brain Res 176:448–464

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Newell KM (2003) Aging and the time and frequency structure of force output variability. J Appl Physiol 94:903–912

    Article  PubMed  Google Scholar 

  • Van Beers RJ, Haggard P, Wolpert DM (2004) The role of execution noise in movement variability. J Neurophysiol 91:1050–1063

    Article  PubMed  Google Scholar 

  • Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  • Vega SR, Hollmann W, Strüder HK (2012) Influences of exercise and training on the circulating concentration of prolactin in humans. J Neuroendocrinol 24:395–402

    Article  CAS  Google Scholar 

  • Venckunas T, Skurvydas A, Brazaitis M, Kamandulis S, Snieckus A, Moran CN (2012) Human alpha-actinin-3 genotype association with exercise-induced muscle damage and the repeated-bout effect. Appl Physiol Nutr Metab 37:1038–1046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Danute Juciene for collecting the blood samples and gathering the volunteers to participate in this research. Funding for this work was provided by Research Council of Lithuania Grant No. MIP-017/2014.

Author’s contribution statement

The authors AS and MB contributed to the design of the work. The authors LK, NE, NB, DM performed the experiments. The authors LK, AS, MC, MB, DU contributed to the analysis and interpretation of data for the work. The authors LK, AS, MB drafted the work for important intellectual content. The authors DM, DU, NE, NB, MC finally approved the version to be submitted. The author MB contributed to the revision of this work. All the authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Brazaitis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyguoliene, L., Skurvydas, A., Eimantas, N. et al. Effect of constant, predictable, and unpredictable motor tasks on motor performance and blood markers of stress. Exp Brain Res 235, 1323–1336 (2017). https://doi.org/10.1007/s00221-017-4894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4894-7

Keywords

Navigation