Skip to main content
Log in

N100 as a generic cortical electrophysiological marker based on decomposition of TMS-evoked potentials across five anatomic locations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

N100, the negative peak of electrical response occurring around 100 ms, is present in diverse functional paradigms including auditory, visual, somatic, behavioral and cognitive tasks. We hypothesized that the presence of the N100 across different paradigms may be indicative of a more general property of the cerebral cortex regardless of functional or anatomic specificity. To test this hypothesis, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to measure cortical excitability by TMS across cortical regions without relying on specific sensory, cognitive or behavioral modalities. The five stimulated regions included left prefrontal, left motor, left primary auditory cortices, the vertex and posterior cerebellum with stimulations performed using supra- and subthreshold intensities. EEG responses produced by TMS stimulation at the five locations all generated N100s that peaked at the vertex. The amplitudes of the N100s elicited by these five diverse cortical origins were statistically not significantly different (all uncorrected p > 0.05). No other EEG response components were found to have this global property of N100. Our findings suggest that anatomy- and modality-specific interpretation of N100 should be carefully evaluated, and N100 by TMS may be used as a biomarker for evaluating local versus general cortical properties across the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bender S, Basseler K, Sebastian I, Resch F, Kammer T, Oelkers-Ax R, Weisbrod M (2005) Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials. Ann Neurol 58:58–67

    Article  PubMed  Google Scholar 

  • Bonato C, Miniussi C, Rossini PM (2006) Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clin Neurophysiol 117:1699–1707

    Article  CAS  PubMed  Google Scholar 

  • Bonnard M, Spieser L, Meziane HB, de Graaf JB, Pailhous J (2009) Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG. Eur J Neurosci 30:913–923

    Article  CAS  PubMed  Google Scholar 

  • Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG (1992) Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 85:9–16

    Article  CAS  PubMed  Google Scholar 

  • Cannon TD, Hennah W, van Erp TGM et al (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short-and long-term memory. Arch Gen Psychiatry 62:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Chan PY, Davenport PW (2008) Respiratory-related evoked potential measures of respiratory sensory gating. J Appl Physiol 105:1106–1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Darling WG, Wolf SL, Butler AJ (2006) Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res 174:376–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Du X, Chen L, Zhou K (2012) The role of the left posterior parietal lobule in top-down modulation on space-based attention: a transcranial magnetic stimulation study. Hum Brain Mapp 33:2477–2486

    Article  PubMed  Google Scholar 

  • Du X, Summerfelt A, Chiappelli J, Holcomb HH, Hong LE (2014) Individualized brain inhibition and excitation profile in response to paired-pulse TMS. J Mot Behav 46:39–48

    Article  PubMed  Google Scholar 

  • Du X, Choa FS, Summerfelt A et al (2015) Neural summation in human motor cortex by subthreshold transcranial magnetic stimulations. Exp Brain Res 233:671–677

    Article  PubMed  Google Scholar 

  • Farzan F, Barr MS, Wong W, Chen R, Fitzgerald PB, Daskalakis ZJ (2009) Suppression of gamma-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS-EEG study. Neuropsychopharmacology 34:1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Ferreri F, Pasqualetti P, Maatta S et al (2011) Human brain connectivity during single and paired pulse transcranial magnetic stimulation. NeuroImage 54:90–102

    Article  PubMed  Google Scholar 

  • Ferreri F, Ponzo D, Hukkanen T et al (2012) Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study. J Neurophysiol 108:314–323

    Article  PubMed  Google Scholar 

  • Garcia JO, Grossman ED, Srinivasan R (2011) Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. J Neurophysiol 106:1734–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Greffrath W, Baumgartner U, Treede RD (2007) Peripheral and central components of habituation of heat pain perception and evoked potentials in humans. Pain 132:301–311

    Article  PubMed  Google Scholar 

  • Helfrich C, Pierau SS, Freitag CM, Roeper J, Ziemann U, Bender S (2012) Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study. PLoS ONE 7:e50073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herring JD, Thut G, Jensen O, Bergmann TO (2015) Attention modulates TMS-locked alpha oscillations in the visual cortex. J Neurosci 35:14435–14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilmoniemi RJ, Kicic D (2010) Methodology for combined TMS and EEG. Brain Topogr 22:233–248

    Article  PubMed  Google Scholar 

  • Jahanshahi M, Profice P, Brown RG, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121(Pt 8):1533–1544

    Article  PubMed  Google Scholar 

  • Jeon YW, Polich J (2001) P3a from a passive visual stimulus task. Clin Neurophysiol 112:2202–2208

    Article  CAS  PubMed  Google Scholar 

  • Johnson JS, Kundu B, Casali AG, Postle BR (2012) Task-dependent changes in cortical excitability and effective connectivity: a combined TMS-EEG study. J Neurophysiol 107:2383–2392

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahkonen S, Wilenius J (2007) Effects of alcohol on TMS-evoked N100 responses. J Neurosci Methods 166:104–108

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112:250–258

    Article  CAS  PubMed  Google Scholar 

  • Kicic D, Lioumis P, Ilmoniemi RJ, Nikulin VV (2008) Bilateral changes in excitability of sensorimotor cortices during unilateral movement: combined electroencephalographic and transcranial magnetic stimulation study. Neuroscience 152:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Komssi S, Kahkonen S (2006) The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res Rev 52:183–192

    Article  PubMed  Google Scholar 

  • Komssi S, Kahkonen S, Ilmoniemi RJ (2004) The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 21:154–164

    Article  PubMed  Google Scholar 

  • Lioumis P, Kicic D, Savolainen P, Makela JP, Kahkonen S (2009) Reproducibility of TMS-Evoked EEG responses. Hum Brain Mapp 30:1387–1396

    Article  PubMed  Google Scholar 

  • Litvak V, Komssi S, Scherg M et al (2007) Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex. NeuroImage 37:56–70

    Article  PubMed  Google Scholar 

  • Maki H, Ilmoniemi RJ (2010) The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neurosci Lett 478:24–28

    Article  PubMed  Google Scholar 

  • Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17:1057–1074

    Article  CAS  PubMed  Google Scholar 

  • Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science (New York, N.Y.) 309:2228–2232

    Article  CAS  Google Scholar 

  • Mutanen T, Maki H, Ilmoniemi RJ (2013) The effect of stimulus parameters on TMS-EEG muscle artifacts. Brain Stimul 6:371–376

    Article  PubMed  Google Scholar 

  • Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with simultaneous EEG. Clin Neurophysiol 110:1325–1328

    Article  CAS  PubMed  Google Scholar 

  • Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 18:1206–1212

    Article  PubMed  Google Scholar 

  • Olincy A, Martin L (2005) Diminished suppression of the P50 auditory evoked potential in bipolar disorder subjects with a history of psychosis. Am J Psychiatry 162:43–49

    Article  PubMed  Google Scholar 

  • Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990

    CAS  PubMed  Google Scholar 

  • Pause BM, Sojka B, Krauel K, Ferstl R (1996) The nature of the late positive complex within the olfactory event-related potential (OERP). Psychophysiology 33:376–384

    Article  CAS  PubMed  Google Scholar 

  • Polich J, Comerchero MD (2003) P3a from visual stimuli: typicality, task, and topography. Brain Topogr 15:141–152

    Article  PubMed  Google Scholar 

  • Premoli I, Castellanos N, Rivolta D et al (2014a) TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J Neurosci 34:5603–5612

    Article  PubMed  Google Scholar 

  • Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, Muller-Dahlhaus F (2014b) Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS-EEG. NeuroImage 103C:152–162

    Article  Google Scholar 

  • Quant S, Maki BE, McIlroy WE (2005) The association between later cortical potentials and later phases of postural reactions evoked by perturbations to upright stance. Neurosci Lett 381:269–274

    Article  CAS  PubMed  Google Scholar 

  • Rogasch NC, Fitzgerald PB (2013) Assessing cortical network properties using TMS-EEG. Hum Brain Mapp 34:1652–1669

    Article  PubMed  Google Scholar 

  • Rogasch NC, Thomson RH, Farzan F et al (2014) Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties. Neuroimage 101:425–439

    Article  PubMed  Google Scholar 

  • Rogasch NC, Daskalakis ZJ, Fitzgerald PB (2015) Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: a TMS-EEG study. Cortex 64:68–77

    Article  PubMed  Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  CAS  PubMed  Google Scholar 

  • Semlitsch HV, Anderer P, Schuster P, Presslich O (1986) A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 23:695–703

    Article  CAS  PubMed  Google Scholar 

  • Spieser L, Meziane HB, Bonnard M (2010) Cortical mechanisms underlying stretch reflex adaptation to intention: a combined EEG-TMS study. Neuroimage 52:316–325

    Article  CAS  PubMed  Google Scholar 

  • Stokes MG, Chambers CD, Gould IC, Henderson TR, Janko NE, Allen NB, Mattingley JB (2005) Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94:4520–4527

    Article  PubMed  Google Scholar 

  • Stokes MG, Chambers CD, Gould IC, English T, McNaught E, McDonald O, Mattingley JB (2007) Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin Neurophysiol 118:1617–1625

    Article  PubMed  Google Scholar 

  • Stokes MG, Barker AT, Dervinis M, Verbruggen F, Maizey L, Adams RC, Chambers CD (2013) Biophysical determinants of transcranial magnetic stimulation: effects of excitability and depth of targeted area. J Neurophysiol 109:437–444

    Article  PubMed  Google Scholar 

  • Tanaka JW, Curran T, Porterfield AL, Collins D (2006) Activation of preexisting and acquired face representations: the N250 event-related potential as an index of face familiarity. J Cogn Neurosci 18:1488–1497

    Article  PubMed  Google Scholar 

  • Ter Braack EM, de Jonge B, van Putten MJ (2013) Reduction of TMS induced artifacts in EEG using principal component analysis. IEEE Trans Neural Syst Rehabil Eng 21:376–382

    Article  PubMed  Google Scholar 

  • Ter Braack EM, de Vos CC, van Putten MJ (2015) Masking the auditory evoked potential in TMS-EEG: a comparison of various methods. Brain Topogr 28:520–528

    Article  PubMed  Google Scholar 

  • van Elk M, Salomon R, Kannape O, Blanke O (2014) Suppression of the N1 auditory evoked potential for sounds generated by the upper and lower limbs. Biol Psychol 102:108–117

    Article  PubMed  Google Scholar 

  • Veniero D, Bortoletto M, Miniussi C (2009) TMS-EEG co-registration: on TMS-induced artifact. Clin Neurophysiol 120:1392–1399

    Article  PubMed  Google Scholar 

  • Virtanen J, Ruohonen J, Naatanen R, Ilmoniemi RJ (1999) Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput 37:322–326

    Article  CAS  PubMed  Google Scholar 

  • Vlcek P, Bob P, Raboch J (2014) Sensory disturbances, inhibitory deficits, and the P50 wave in schizophrenia. Neuropsychiatr Dis Treat 10:1309–1315

    PubMed  PubMed Central  Google Scholar 

  • Wang AL, Mouraux A, Liang M, Iannetti GD (2008) The enhancement of the N1 wave elicited by sensory stimuli presented at very short inter-stimulus intervals is a general feature across sensory systems. PLoS ONE 3:e3929

    Article  PubMed  PubMed Central  Google Scholar 

  • Werhahn KJ, Fong JK, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93:138–146

    Article  CAS  PubMed  Google Scholar 

  • Woodman GF, Luck SJ (2003) Serial deployment of attention during visual search. Journal of experimental psychology. Hum Percept Perform 29:121–138

    Article  Google Scholar 

  • Yamanaka K, Kadota H, Nozaki D (2013) Long-latency TMS-evoked potentials during motor execution and inhibition. Front Hum Neurosci 7:751

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support was received from NIH grants MH085646, DA027680 and MH103222

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Du.

Ethics declarations

Conflict of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Choa, FS., Summerfelt, A. et al. N100 as a generic cortical electrophysiological marker based on decomposition of TMS-evoked potentials across five anatomic locations. Exp Brain Res 235, 69–81 (2017). https://doi.org/10.1007/s00221-016-4773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4773-7

Keywords

Navigation