Skip to main content
Log in

Effect of muscle contraction strength on gating of somatosensory magnetic fields

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Afferent somatosensory information is modulated before the afferent input arrives at the primary somatosensory cortex during voluntary movement. The aim of the present study was to clarify the effect of muscular contraction strength on somatosensory evoked fields (SEFs) during voluntary movement. In addition, we examined the differences in gating between innervated and non-innervated muscle during contraction. We investigated the changes in gating effect by muscular contraction strength and innervated and non-innervated muscles in human using 306-channel magnetoencephalography. SEFs were recorded following the right median nerve stimulation in a resting condition and during isometric muscular contractions from 10 % electromyographic activity (EMG), 20 and 30 % EMG of the right extensor indicis muscle and abductor pollicis brevis muscle. Our results showed that the equivalent current dipole (ECD) strength for P35m decreased with increasing strength of muscular contraction of the right abductor pollicis brevis muscle. However, changes were observed only at 30 % EMG contraction level of the right extensor indicis muscle, which was not innervated by the median nerve. There were no significant changes in the peak latencies and ECD locations of each component in all conditions. The ECD strength did not differ significantly for N20m and P60m regardless of the strength of muscular contraction and innervation. Therefore, we suggest that the gating of SEF waveforms following peripheral nerve stimulation was affected by the strength of muscular contraction and innervation of the contracting muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cheron G, Borenstein S (1992) Mental movement simulation affects the N30 frontal component of the somatosensory evoked potential. Electroencephalogr Clin Neurophysiol 84:288–292

    Article  CAS  PubMed  Google Scholar 

  • Cohen LG, Starr A (1987) Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man. Brain J Neurol 110:451–467

    Article  Google Scholar 

  • Courtemanche R, Sun GD, Lamarre Y (1997) Movement-related modulation across the receptive field of neurons in the primary somatosensory cortex of the monkey. Brain Res 777:170–178

    Article  CAS  PubMed  Google Scholar 

  • Dai TH, Liu JZ, Sahgal V, Brown RW, Yue GH (2001) Relationship between muscle output and functional MRI-measured brain activation. Exp Brain Res 140:290–300

    Article  CAS  PubMed  Google Scholar 

  • Fanselow EE, Nicolelis MA (1999) Behavioral modulation of tactile responses in the rat somatosensory system. J Neurosci Off J Soc Neurosci 19:7603–7616

    CAS  Google Scholar 

  • Forss N, Jousmaki V (1998) Sensorimotor integration in human primary and secondary somatosensory cortices. Brain Res 781:259–267

    Article  CAS  PubMed  Google Scholar 

  • Forss N, Hari R, Salmelin R, Ahonen A, Hämäläinen M, Kajola M, Knuutila J, Simola J (1994) Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res 99:309–315

    Article  CAS  PubMed  Google Scholar 

  • Gantchev G, Gavrilenko T, Concek V (1994) Somatosensory evoked potentials modification related to isometric voluntary contraction. Int J Psychophysiol 17:191–196

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Jankowska E (1984) Do interneurones in lower lumbar segments contribute to the presynaptic depolarization of group I muscle afferents in Clarke’s column? Brain Res 295:203–210

    Article  CAS  PubMed  Google Scholar 

  • Huttunen J, Lauronen L (2012) Intracortical modulation of somatosensory evoked fields during movement: evidence for selective suppression of postsynaptic inhibition. Brain Res 1459:43–51. doi:10.1016/j.brainres.2012.04.023

    Article  CAS  PubMed  Google Scholar 

  • Huttunen J, Hari R, Leinonen L (1987) Cerebral magnetic responses to stimulation of ulnar and median nerves. Electroencephalogr Clin Neurophysiol 66:391–400

    Article  CAS  PubMed  Google Scholar 

  • Huttunen J, Ahlfors S, Hari R (1992) Interaction of afferent impulses in the human primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 82:176–181

    Article  CAS  PubMed  Google Scholar 

  • Huttunen J, Jääskeläinen IP, Hirvonen J, Kaakkola S, Ilmoniemi RJ, Pekkonen E (2001) Scopolamine reduces the P35m and P60m deflections of the human somatosensory evoked magnetic fields. NeuroReport 12:619–623

    Article  CAS  PubMed  Google Scholar 

  • Huttunen J, Kähkönen S, Kaakkola S, Ahveninen J, Pekkonen E (2003) Effects of an acute D2-dopaminergic blockade on the somatosensory cortical responses in healthy humans: evidence from evoked magnetic fields. NeuroReport 14:1609–1612. doi:10.1097/01.wnr.0000085689.46774.53

    Article  CAS  PubMed  Google Scholar 

  • Huttunen J, Komssi S, Lauronen L (2006) Spatial dynamics of population activities at S1 after median and ulnar nerve stimulation revisited: an MEG study. NeuroImage 32:1024–1031. doi:10.1016/j.neuroimage.2006.04.196

    Article  PubMed  Google Scholar 

  • Ishibashi H, Tobimatsu S, Shigeto H, Morioka T, Yamamoto T, Fukui M (2000) Differential interaction of somatosensory inputs in the human primary sensory cortex: a magnetoencephalographic study. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 111:1095–1102

    Article  CAS  Google Scholar 

  • Jiang W, Chapman CE, Lamarre Y (1990a) Modulation of somatosensory evoked responses in the primary somatosensory cortex produced by intracortical microstimulation of the motor cortex in the monkey. Exp Brain Res 80:333–344

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Lamarre Y, Chapman CE (1990b) Modulation of cutaneous cortical evoked potentials during isometric and isotonic contractions in the monkey. Brain Res 536:69–78

    Article  CAS  PubMed  Google Scholar 

  • Jones SJ, Halonen JP, Shawkat F (1989) Centrifugal and centripetal mechanisms involved in the ‘gating’ of cortical SEPs during movement. Electroencephalogr Clin Neurophysiol 74:36–45

    Article  CAS  PubMed  Google Scholar 

  • Kakigi R (1994) Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res 20:165–174

    Article  CAS  PubMed  Google Scholar 

  • Kakigi R, Jones SJ (1985) Effects on median nerve SEPs of tactile stimulation applied to adjacent and remote areas of the body surface. Electroencephalogr Clin Neurophysiol 62:252–265

    Article  CAS  PubMed  Google Scholar 

  • Kakigi R, Koyama S, Hoshiyama M, Watanabe S, Shimojo M, Kitamura Y (1995) Gating of somatosensory evoked responses during active finger movements magnetoencephalographic studies. J Neurol Sci 128:195–204

    Article  CAS  PubMed  Google Scholar 

  • Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61:495–523

    Article  CAS  PubMed  Google Scholar 

  • Kawamura T, Nakasato N, Seki K, Kanno A, Fujita S, Fujiwara S, Yoshimoto T (1996) Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol 100:44–50

    Article  CAS  PubMed  Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Sakajiri Y, Tazoe T (2004) Differential modulation of the short- and long-latency somatosensory evoked potentials in a forewarned reaction time task. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 115:2223–2230. doi:10.1016/j.clinph.2004.04.017

    Article  Google Scholar 

  • Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R (2006) Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. NeuroImage 32:1355–1364. doi:10.1016/j.neuroimage.2006.05.015

    Article  PubMed  Google Scholar 

  • Kirimoto H, Tamaki H, Suzuki M, Matsumoto T, Sugawara K, Kojima S, Onishi H (2014) Sensorimotor modulation differs with load type during constant finger force or position. PLoS one 9:e108058. doi:10.1371/journal.pone.0108058

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L (1990) Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalogr Clin Neurophysiol 75:410–418

    Article  CAS  PubMed  Google Scholar 

  • Kristeva R, Cheyne D, Deecke L (1991) Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol 81:284–298

    Article  CAS  PubMed  Google Scholar 

  • Kristeva-Feige R, Rossi S, Pizzella V, Tecchio F, Romani GL, Erne S, Edrich J, Orlacchio A, Rossini PM (1995) Neuromagnetic fields of the brain evoked by voluntary movement and electrical stimulation of the index finger. Brain Res 682:22–28

    Article  CAS  PubMed  Google Scholar 

  • Kristeva-Feige R, Rossi S, Pizzella V, Lopez L, Erne SN, Edrich J, Rossini PM (1996a) A neuromagnetic study of movement-related somatosensory gating in the human brain. Exp Brain Res 107:504–514

    Article  CAS  PubMed  Google Scholar 

  • Kristeva-Feige R, Rossi S, Pizzella V, Tecchio F, Romani GL, Edrich J, Rossini PM (1996b) Functional organization of the primary sensory cortex in humans: a neuromagnetic study. Electroencephalogr Clin Neurophysiol Suppl 46:215–220

    CAS  PubMed  Google Scholar 

  • Lin YY, Simoes C, Forss N, Hari R (2000) Differential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses. NeuroImage 11:334–340. doi:10.1006/nimg.1999.0536

    Article  CAS  PubMed  Google Scholar 

  • Lin YY, Chen WT, Liao KK, Yeh TC, Wu ZA, Ho LT, Lee LS (2005) Differential generators for N20m and P35m responses to median nerve stimulation. NeuroImage 25:1090–1099. doi:10.1016/j.neuroimage.2004.12.047

    Article  CAS  PubMed  Google Scholar 

  • Liu JZ, Shan ZY, Zhang LD, Sahgal V, Brown RW, Yue GH (2003) Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. J Neurophysiol 90:300–312. doi:10.1152/jn.00821.2002

    Article  PubMed  Google Scholar 

  • Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain J Neurol 122:1989–1997

    Article  Google Scholar 

  • Morita H, Petersen N, Nielsen J (1998) Gating of somatosensory evoked potentials during voluntary movement of the lower limb in man. Exp Brain Res 120:143–152

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Nishihira Y, Kakigi R (2003) Mechanisms of differences in gating effects on short-and long-latency somatosensory evoked potentials relating to movement. Brain Topogr 15:211–222

    Article  PubMed  Google Scholar 

  • Nishihira Y, Araki H, Funase K, Imanaka K (1997) Selective modification of somatosensory evoked potential during voluntary finger movement in humans. Percept Mot Skills 85:259–266. doi:10.2466/pms.1997.85.1.259

    Article  CAS  PubMed  Google Scholar 

  • Ogata K, Okamoto T, Yamasaki T, Shigeto H, Tobimatsu S (2009) Pre-movement gating of somatosensory-evoked potentials by self-initiated movements: the effects of ageing and its implication. Clin Neurophys Off J Int Fed Clin Neurophys 120:1143–1148. doi:10.1016/j.clinph.2009.01.020

    Article  Google Scholar 

  • Onishi H, Soma T, Kameyama S, Oishi M, Fuijmoto A, Oyama M, Furusawa AA, Kurokawa Y (2006) Cortical neuromagnetic activation accompanying two types of voluntary finger extension. Brain Res 1123:112–118. doi:10.1016/j.brainres.2006.09.033

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Oyama M, Soma T, Kirimoto H, Sugawara K, Murakami H, Kameyama S (2011) Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: an MEG study. Clin Neurophys Off J Int Fed Clin Neurophys 122:605–610. doi:10.1016/j.clinph.2010.07.027

    Article  Google Scholar 

  • Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S (2013) Neuromagnetic activation following active and passive finger movements. Brain and behavior 3:178–192. doi:10.1002/brb3.126

    Article  PubMed  PubMed Central  Google Scholar 

  • Post M, Steens A, Renken R, Maurits NM, Zijdewind I (2009) Voluntary activation and cortical activity during a sustained maximal contraction: an fMRI study. Hum Brain Mapp 30:1014–1027. doi:10.1002/hbm.20562

    Article  PubMed  Google Scholar 

  • Rauch R, Angel RW, Boylls CC (1985) Velocity-dependent suppression of somatosensory evoked potentials during movement. Electroencephalogr Clin Neurophysiol 62:421–425

    Article  CAS  PubMed  Google Scholar 

  • Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain J Neurol 104:465–491

    Article  CAS  Google Scholar 

  • Schnitzler A, Witte OW, Cheyne D, Haid G, Vrba J, Freund HJ (1995) Modulation of somatosensory evoked magnetic fields by sensory and motor interferences. NeuroReport 6:1653–1658

    Article  CAS  PubMed  Google Scholar 

  • Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V (2000) Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res 133:303–311

    Article  CAS  PubMed  Google Scholar 

  • Starr A, Cohen LG (1985) ‘Gating’ of somatosensory evoked potentials begins before the onset of voluntary movement in man. Brain Res 348:183–186

    Article  CAS  PubMed  Google Scholar 

  • Sugawara K, Onishi H, Yamashiro K, Kirimoto H, Tsubaki A, Suzuki M, Tamaki H, Murakami H, Kameyama S (2013a) Activation of the human premotor cortex during motor preparation in visuomotor tasks. Brain Topogr 26:581–590. doi:10.1007/s10548-013-0299-5

    Article  PubMed  Google Scholar 

  • Sugawara K, Onishi H, Yamashiro K, Soma T, Oyama M, Kirimoto H, Tamaki H, Murakami H, Kameyama S (2013b) Repeated practice of a Go/NoGo visuomotor task induces neuroplastic change in the human posterior parietal cortex: an MEG study. Exp Brain Res. doi:10.1007/s00221-013-3461-0

    Google Scholar 

  • Sugawara K, Onishi H, Yamashiro K, Kojima S, Miyaguchi S, Kirimoto H, Tsubaki A, Tamaki H, Shirozu H, Kameyama S (2014) The effect of anodal transcranial direct current stimulation over the primary motor or somatosensory cortices on somatosensory evoked magnetic fields. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. doi:10.1016/j.clinph.2014.04.014

    Google Scholar 

  • Tapia MC, Cohen LG, Starr A (1987) Selectivity of attenuation (i.e., gating) of somatosensory potentials during voluntary movement in humans. Electroencephalogr Clin Neurophysiol 68:226–230

    Article  CAS  PubMed  Google Scholar 

  • Wasaka T, Hoshiyama M, Nakata H, Nishihira Y, Kakigi R (2003) Gating of somatosensory evoked magnetic fields during the preparatory period of self-initiated finger movement. NeuroImage 20:1830–1838

    Article  PubMed  Google Scholar 

  • Wasaka T, Nakata H, Kida T, Kakigi R (2005) Gating of SEPs by contraction of the contralateral homologous muscle during the preparatory period of self-initiated plantar flexion. Brain Res Cogn Brain Res 23:354–360. doi:10.1016/j.cogbrainres.2004.11.002

    Article  PubMed  Google Scholar 

  • Wikström H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100:479–487

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-Aid for Scientific Research (B) 25282162 and 16H03207 from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Sugawara.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawara, K., Onishi, H., Yamashiro, K. et al. Effect of muscle contraction strength on gating of somatosensory magnetic fields. Exp Brain Res 234, 3389–3398 (2016). https://doi.org/10.1007/s00221-016-4736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4736-z

Keywords

Navigation