Skip to main content
Log in

Interference effects between memory systems in the acquisition of a skill

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albouy G et al (2008) Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron 58:261–272

    Article  CAS  PubMed  Google Scholar 

  • Albouy G et al (2012) Neural correlates of performance variability during motor sequence acquisition. NeuroImage 60:324–331. doi:10.1016/j.neuroimage.2011.12.049

    Article  PubMed  Google Scholar 

  • Albouy G, King BR, Maquet P, Doyon J (2013) Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus 23:985–1004

    Article  PubMed  Google Scholar 

  • Albouy G et al (2015) Maintaining versus enhancing motor sequence memories: respective roles of striatal and hippocampal systems. NeuroImage 108:423–434. doi:10.1016/j.neuroimage.2014.12.049

    Article  PubMed  Google Scholar 

  • Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18:64–80. doi:10.1002/hipo.20369

    Article  PubMed  Google Scholar 

  • Balas M, Netser S, Giladi N, Karni A (2007a) Interference to consolidation phase gains in learning a novel movement sequence by handwriting: dependence on laterality and the level of experience with the written sequence. Exp Brain Res 180:237–246

    Article  PubMed  Google Scholar 

  • Balas M, Roitenberg N, Giladi N, Karni A (2007b) When practice does not make perfect: well-practiced handwriting interferes with the consolidation phase gains in learning a movement sequence. Exp Brain Res 178:499–508

    Article  PubMed  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    Article  CAS  PubMed  Google Scholar 

  • Brown RM, Robertson EM (2007) Off-line processing: reciprocal interactions between declarative and procedural memories. J Neurosci 27:10468–10475

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Robertson EM (2011) Preventing interference between different memory tasks. Nat Neurosci 14:953–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen NJ, Squire LR (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210:207–210

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Pascual-Leone A, Press DZ, Robertson EM (2005) Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc Natl Acad Sci USA 102:18237–18241. doi:10.1073/pnas.0506072102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coynel D et al (2010) Dynamics of motor-related functional integration during motor sequence learning. NeuroImage 49:759–766

    Article  PubMed  Google Scholar 

  • Crane J, Milner B (2005) What went where? Impaired object-location learning in patients with right hippocampal lesions. Hippocampus 15:216–231. doi:10.1002/hipo.20043

    Article  PubMed  Google Scholar 

  • DeCoteau WE, Kesner RP (2000) A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behav Neurosci 114:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222. doi:10.1146/annurev.ne.18.030195.001205

    Article  CAS  PubMed  Google Scholar 

  • Dorfberger S, Adi-Japha E, Karni A (2007) Reduced susceptibility to interference in the consolidation of motor memory before adolescence. PLoS One 2:e240

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15:161–167. doi:10.1016/j.conb.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  • Doyon J, Gaudreau D, Laforce RL Jr, Castonguay M, Bedard PJ, Bedard F, Bouchard JP (1997) Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn 34:218–245

    Article  CAS  PubMed  Google Scholar 

  • Doyon J et al (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 199:61–75

    Article  PubMed  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Ann Rev Psychol 55:51–86

    Article  Google Scholar 

  • Eckart MT, Huelse-Matia MC, Schwarting RKW (2012) Dorsal hippocampal lesions boost performance in the rat sequential reaction time task. Hippocampus 22:1202–1214. doi:10.1002/hipo.20965

    Article  CAS  PubMed  Google Scholar 

  • Ertelt D et al (2012) Skill memory escaping from distraction by sleep-evidence from dual-task performance. PLoS One. doi:10.1371/journal.pone.0050983

    PubMed  PubMed Central  Google Scholar 

  • Fogel SM, Albouy G, Vien C, Popovicci R, King BR, Hoge R, Jbabdi S, Benali H, Karni A, Maquet P, Carrier J, Doyon J (2014) fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Hum Brain Mapp 35(8):3625-3645 .doi:10.1002/hbm.22426

    Article  PubMed  Google Scholar 

  • Gagné MH, Cohen H (2016) Interference effects between manual and oral motor skills. Experimental Brain Res 234:845–851

    Article  Google Scholar 

  • Galea JM, Albert NB, Ditye T, Miall RC (2010) Disruption of the dorsolateral prefrontal cortex facilitates the consolidation of procedural skills. J Cogn Neurosci 22:1158–1164. doi:10.1162/jocn.2009.21259

    Article  PubMed  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry R (1995) Functional mapping of sequence learning in normal humans. J Cogn Neurosci 7:497–510

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand: a PET functional imaging study. Exp Brain Res 146:369–378. doi:10.1007/s00221-002-1181-y

    Article  PubMed  Google Scholar 

  • Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage 67:283–297. doi:10.1016/j.neuroimage.2012.11.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Karni A (1996) The acquisition of perceptual and motor skills: a memory system in the adult human cortex. Cogn Brain Res 5:39–48

    Article  CAS  Google Scholar 

  • Karni A, Sagi D (1993) The time course of learning a visual skill. Nature 365:250–252

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA 95:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341. doi:10.1146/annurev.neuro.23.1.315

    Article  CAS  PubMed  Google Scholar 

  • Keisler A, Shadmehr R (2010) A shared resource between declarative memory and motor memory. J Neurosci 30:14817–14823. doi:10.1523/jneurosci.4160-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesner RP, Bolland BL, Dakis M (1993) Memory for spatial locations, motor responses, and objects: triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Exp Brain Res 93:462–470. doi:10.1007/BF00229361

    Article  CAS  PubMed  Google Scholar 

  • Korman M, Doyon J, Doljansky J, Carrier J, Dagan Y, Karni A (2007) Daytime sleep condenses the time course of motor memory consolidation. Nat Neurosci 10:1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Kichka M (1978) Tel-aviv Traffic. https://www.pinterest.com/pin/426082814716780323/. Accessed 04 July 2016

  • Krakauer JW, Shadmehr R (2006) Consolidation of motor memory. Trends Neurosci 29:58–64

    Article  CAS  PubMed  Google Scholar 

  • Lehericy S, Benali H, Van De Moortele PF, Pelegrini-Issac M, Waechter T, Ugurbil K, Doyon J (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA 102:12566–12571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse KR, Wadden K, Boyd LA, Hodges NJ (2014) Motor skill acquisition across short and long time scales: a meta-analysis of neuroimaging data. Neuropsychologia 59:130–141. doi:10.1016/j.neuropsychologia.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  • Lundbye-Jensen J, Petersen TH, Rothwell JC, Nielsen JB (2011) Interference in ballistic motor learning: specificity and role of sensory error signals. PLoS One 6:e17451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maquet P et al (2000) Experience-dependent changes in changes in cerebral activation during human REM sleep. Nat Neurosci 3:831–836

    Article  CAS  PubMed  Google Scholar 

  • Morehead JR, Butcher PA, Taylor JA (2011) Does fast learning depend on declarative mechanisms? J Neurosci 31:5184–5185. doi:10.1523/jneurosci.0040-11.2011

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • Packard MG, Hirsh R, White NM (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci 9:1465–1472

    CAS  PubMed  Google Scholar 

  • Peigneux P, Melchior G, Schmidt C, Dang-Vu T, Boly M, Laureys S, Maquet P (2004) Memory processing during sleep mechanisms and evidence from neuroimaging studies. Psychol Belg 44:121–142

    Google Scholar 

  • Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41:245–251

    Article  PubMed  Google Scholar 

  • Poldrack RA, Rodriguez P (2004) How do memory systems interact? Evidence from human classification learning. Neurobiol Learn Mem 82:324–332

    Article  PubMed  Google Scholar 

  • Rieckmann A, Fischer H, Bäckman L (2010) Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: relations to performance. NeuroImage 50:1303–1312. doi:10.1016/j.neuroimage.2010.01.015

    Article  PubMed  Google Scholar 

  • Robertson EM (2012) New insights in human memory interference and consolidation. Curr Biol 22:R66–R71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson EM, Pascual-Leone A, Miall RC (2004) Current concepts in procedural consolidation. Nat Rev Neurosci 5:576–582

    Article  CAS  PubMed  Google Scholar 

  • Steele CJ, Penhune VB (2010) Specific Increases within Global Decreases: A Functional Magnetic Resonance Imaging Investigation of Five Days of Motor Sequence Learning. J Neurosci 30(24):8332–8341. doi:10.1523/JNEUROSCI.5569-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Schendan HE, Searl MM, Melrose RJ, Stern CE (2003) An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37:1013–1025

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr R, Brashers-Krug T (1997) Functional stages in the formation of human long-term motor memory. J Neurosci 17:409–419

    CAS  PubMed  Google Scholar 

  • Smith ML, Milner B (1981) The role of the right hippocampus in the recall of spatial location. Neuropsychologia 19:781–793. doi:10.1016/0028-3932(81)90090-7

    Article  CAS  PubMed  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  CAS  PubMed  Google Scholar 

  • Tibi R, Eviatar Z, Karni A (2013) Fact retrieval and memory consolidation for a movement sequence: bidirectional effects of ‘unrelated’ cognitive tasks on procedural memory. PLoS One 8:e80270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker MP, Brakefield T, Hobson JA, Stickgold R (2003) Dissociable stages of human memory consolidation and reconsolidation. Nature 425:616–620

    Article  CAS  PubMed  Google Scholar 

  • Zach N, Inbar D, Grinvald Y, Vaadia E (2012) Single neurons in M1 and premotor cortex directly reflect behavioral interference. PLoS One 7:e32986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jean Bégin for his help with the statistical analyses. This study was funded by a grant from FQRNT (Québec).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagné, MH., Cohen, H. Interference effects between memory systems in the acquisition of a skill. Exp Brain Res 234, 2883–2891 (2016). https://doi.org/10.1007/s00221-016-4690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4690-9

Keywords

Navigation