Skip to main content
Log in

Coordination dynamics of (a)symmetrically loaded gait

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Asymmetries in the resonant frequency of limbs/effectors lead to changes in coordination dynamics, including deviations in relative phase at ϕ = 0 or π rad and reduced stability. These effects have been successfully modeled by the extended Haken–Kelso–Bunz (HKB) coupled oscillator model (Kelso et al. in Attention and performance XIII. Erlbaum, Hillsdale, pp 139–169, 1990), and supported in laboratory tasks of rhythmic limb motions. Efforts to apply the HKB model to walking have supported the predicted deviations in phase, but not the expected decreases in coordination stability. The lack of stability effects arising from asymmetries may be due to the stabilizing influence of a treadmill or may be obscured by the balance requirements and ground impacts in gait. This study examined these possibilities by investigating walking overground with ankle weights of 3 or 6 kg to create asymmetries between the legs, as well as symmetrical loads. Participants walked without a metronome and separately with a metronome to control speed and cadence. Coordination dynamics between the legs were quantified through mean and standard deviation (SD) of ϕ, while individual leg local dynamic stability was calculated as maximum Lyapunov exponent (λ MAX). Irrespective of the condition, asymmetrical loads led to deviations in phase from antiphase with the loaded leg lagging behind the other, and both SDϕ and λ MAX increased (i.e., stability decreased). Symmetrical loads had no effect on phase deviations, but decreased stability. Overall, these findings indicate that the HKB model captures coordination dynamics in walking, but also highlights limitations in modeling the influence of loads on an individual limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, New York

    Book  Google Scholar 

  • Amazeen PG, Schmidt RC, Turvey MT (1995) Frequency detuning of the phase entrainment dynamics of visually coupled rhythmic movements. Biol Cybern 72:511–518

    Article  CAS  PubMed  Google Scholar 

  • Amazeen EL, Sternad D, Turvey MT (1996) Predicting the nonlinear drift of stable equilibria in interlimb rhythmic coordination. Hum Mov Sci 15:521–542

    Article  Google Scholar 

  • Amazeen PG, Amazeen EL, Turvey MT (1998) Dynamics of human intersegmental coordination: Theory and research. In: Rosenbaum DA, Collyer CE (eds) Timing of behavior: neural, psychological, and computational perspectives. MIT Press, Cambridge, pp 237–259

    Google Scholar 

  • Beek PJ, Peper CE, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: beyond the Haken–Kelso–Bunz model. Brain Cogn 48:149–165

    Article  CAS  PubMed  Google Scholar 

  • Bruijn SM, Meijer OG, Beek PJ, van Dieën JH (2013) Assessing the stability of human locomotion: a review of current measures. J R Soc Interface 10:20120999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins DR, Sternad D, Turvey MT (1996) An experimental note on defining frequency competition in intersegmental coordination dynamics. J Motor Behav 28:299–304

    Article  CAS  Google Scholar 

  • Craik R, Herman RM, Finlay FR (1976) Human solutions for locomotion: Inter limb coordination. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum, New York, pp 51–63

    Chapter  Google Scholar 

  • de Leva P (1996) Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech 29:1223–1230

    Article  PubMed  Google Scholar 

  • Dingwell JB, Cusumano JP (2000) Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863

    Article  PubMed  Google Scholar 

  • Dingwell JB, Marin LC (2006) Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech 39:444–452

    Article  PubMed  Google Scholar 

  • Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D (2001) Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng-T ASME 123:27–32

    Article  CAS  Google Scholar 

  • Dingwell JB, John J, Cusumano JP (2010) Do humans optimally exploit redundancy to control step variability in walking? PLoS Comput Biol 6:e1000856

    Article  PubMed Central  PubMed  Google Scholar 

  • Donker SF, Beek PJ (2002) Interlimb coordination in prosthetic walking: effects of asymmetry and walking velocity. Acta Psychol 110:265–288

    Article  Google Scholar 

  • Donker SF, Daffertshofer A, Beek PJ (2005) Effects of velocity and limb loading on the coordination between limbs movements during walking. J Motor Behav 37:217–230

    Article  CAS  Google Scholar 

  • England SA, Granata KP (2007) The influence of gait speed on local dynamic stability of walking. Gait Posture 25:172–178. doi:10.1016/j.gaitpost.2006.03.003

    Article  PubMed Central  PubMed  Google Scholar 

  • Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140

    Article  PubMed  Google Scholar 

  • Gilmore R (1981) Catastrophe theory for scientists and engineers. Wiley, New York

    Google Scholar 

  • Haddad JM, van Emmerik REA, Whittlesey SN, Hamill J (2006) Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking. Gait Posture 23:429–434

    Article  PubMed  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  CAS  PubMed  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  CAS  PubMed  Google Scholar 

  • Hatsopoulos NG, Warren WH (1996) Resonance tuning in rhythmic arm movements. J Motor Behav 28:3–14

    Article  Google Scholar 

  • Hebbal GV, Mysorekar VR (2006) Evaluation of some tasks used for specifying handedness and footedness. Percept Motor Skill 102:163–164

    Article  Google Scholar 

  • Heck RH, Thomas SL, Tabata LN (2010) Multilevel and longitudinal modeling with IBM SPSS. Routledge, New York

    Google Scholar 

  • Holt KG, Hamill J, Andres RO (1990) The force-driven harmonic oscillator as a model for human locomotion. Hum Movement Sci 9:55–68

    Article  Google Scholar 

  • Jeka JJ, Kelso JAS (1995) Manipulating symmetry in the coordination dynamics of human movement. J Exp Psychol Human 21:360–374

    Article  CAS  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246:R1000–R1004

    CAS  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS, Jeka JJ (1992) Symmetry breaking dynamics of human multilimb coordination. J Exp Psychol Human 18:645–668

    Article  CAS  Google Scholar 

  • Kelso JAS, Delcolle JD, Schöner GS (1990) Action-perception as a pattern formation process. In: Jeannerod M (ed) Attention and performance XIII. Erlbaum, Hillsdale, pp 139–169

    Google Scholar 

  • Kodesh E, Kafri M, Dar G, Dickstein R (2012) Walking speed, unilateral leg loading, and step symmetry in young adults. Gait Posture 35:66–69

    Article  PubMed  Google Scholar 

  • Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Erlbaum, Hillsdale

    Google Scholar 

  • Lin-Chan S-J, Bilodeau M, Yack HJ, Nielsen DH (2004) The force-driven harmonic oscillator model for energy-efficient locomotion in individuals with transtibial amputation. Hum Mov Sci 22:611–630

    Article  PubMed  Google Scholar 

  • Magee L (1990) R2 measures based on Wald and likelihood ratio joint significance tests. Am Stat 44:250–253

    Google Scholar 

  • Obusek JP, Holt KG, Rosenstein RM (1995) The hybrid mass-spring pendulum model of human leg swinging: stiffness in the control of cycle period. Biol Cybern 73:139–147

    Article  CAS  PubMed  Google Scholar 

  • Peper CE, Nooij SAE, van Soest AJ (2004) Mass perturbation of a body segment: 2. Effects on interlimb coordination. J Motor Behav 36:425–441

    Article  Google Scholar 

  • Rosenblum LD, Turvey MT (1988) Maintenance tendency in co-ordinated rhythmic movements: relative fluctuations and phase. Neuroscience 27:289–300

    Article  CAS  PubMed  Google Scholar 

  • Russell DM, Brillhart DT (2005) Muscle activity is minimal for walking at the resonant frequency. J Sport Exercise Psy 27:S129

    Google Scholar 

  • Russell DM, Haworth JL (2014) Walking at the preferred stride frequency maximizes local dynamic stability of knee motion. J Biomech 47:102–108

    Article  PubMed  Google Scholar 

  • Russell DM, Kalbach CR, Massimini CM, Martinez-Garza C (2010) Leg asymmetries and coordination dynamics in walking. J Motor Behav 42:157–168

    Article  Google Scholar 

  • Schmidt RC, Turvey MT (1994) Phase-entrainment dynamics of visually coupled rhythmic movements. Biol Cybern 70:369–376

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RC, Shaw BK, Turvey MT (1993) Coupling dynamics in interlimb coordination. J Exp Psychol Human 19:397–415

    Article  CAS  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:442–452

    Google Scholar 

  • Sejdić E, Fu Y, Pak A, Fairley JA, Chau T (2012) The effects of rhythmic sensory cues on the temporal dynamics of human gait. PLoS ONE 7:e43104

    Article  PubMed Central  PubMed  Google Scholar 

  • Serrien DJ, Swinnen SP (1997) Isofrequency and multifrequency coordination patterns as a function of the planes of motion. Q J Exp Psychol 50A:386–404

    Article  Google Scholar 

  • Serrien DJ, Swinnen SP (1998) Load compensation during homologous and non-homologous coordination. Exp Brain Res 121:223–229

    Article  CAS  PubMed  Google Scholar 

  • Skinner HB, Barrack RL (1990) Ankle weighting effect on gait in able-bodied adults. Arch Phys Med Rehabil 71:112–115

    CAS  PubMed  Google Scholar 

  • Stergiou N, Buzzi UH, Kurz MJ, Heidel J (2004) Nonlinear tools in human movement. In: Stergiou N (ed) Innovative analyses of human movement: analytical tools for human movement research. Human Kinetics, Champaign, pp 63–90

    Google Scholar 

  • Sternad D, Turvey MT, Schmidt RC (1992) Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biol Cybern 67:223–231

    Article  CAS  PubMed  Google Scholar 

  • Sternad D, Collins DR, Turvey MT (1995) The detuning factor in the dynamics of interlimb rhythmic coordination. Biol Cybern 73:27–35

    Article  CAS  PubMed  Google Scholar 

  • Sternad D, Amazeen EL, Turvey MT (1996) Diffusive, synaptic, and synergetic coupling: an evaluation through in-phase and antiphase rhythmic movements. J Motor Behav 28:255–269

    Article  Google Scholar 

  • Terrier P, Dériaz O (2011) Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J Neuroeng Rehabil 8:1–13

    Article  Google Scholar 

  • Terrier P, Turner V, Schutz Y (2005) GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters. Hum Mov Sci 24:97–115

    Article  PubMed  Google Scholar 

  • Terrier P, Luthi F, Dériaz O (2013) Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries. BMC Musculoskelet Disord 14:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Theiler J, Eubanks S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58:77–94

    Article  Google Scholar 

  • Treffner PJ, Turvey MT (1995) Handedness and the asymmetric dynamics of bimanual rhythmic coordination. J Exp Psychol Human 21:318–333

    Article  Google Scholar 

  • van Soest AJ, Peper CE, Selles RW (2004) Mass perturbation of a body segment: i. Effects on segment dynamics. J Motor Behav 36:419–424

    Article  Google Scholar 

  • von Holst E (1937/1973) On the nature of order in the nervous system. In: Martin RT (ed) The behavioural physiology of animals and man. University of Miami Press, Coral Gables

    Google Scholar 

  • Wagenaar RC, Beek WJ (1992) Hemiplegic gait: a kinematic analysis using walking speed as a basis. J Biomech 25:1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar RC, van Emmerik REA (2000) Resonant frequencies of arms and legs identify different walking patterns. J Biomech 33:853–861

    Article  CAS  PubMed  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D 16:285–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Russell.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, D.M., Haworth, J.L. & Martinez-Garza, C. Coordination dynamics of (a)symmetrically loaded gait. Exp Brain Res 234, 867–881 (2016). https://doi.org/10.1007/s00221-015-4512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4512-5

Keywords

Navigation