Skip to main content
Log in

Wideband phase locking to modulated whisker vibration point to a temporal code for texture in the rat’s barrel cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Rats probe objects with their whiskers and make decisions about sizes, shapes, textures and distances within a few tens of milliseconds. This perceptual analysis requires the processing of tactile high-frequency object components reflecting surface roughness. We have shown that neurons in the barrel cortex of rats encode high-frequency sinusoidal vibrations of whiskers for sustained periods when presented with constant amplitudes and frequencies. In a natural situation, however, stimulus parameters change rapidly when whiskers are brushing across objects. In this study, we therefore analysed cortical responses to vibratory movements of single whiskers with rapidly changing amplitudes and frequencies. The results show that different neural codes are employed for a processing of stimulus parameters. The frequency of whisker vibration is encoded by the temporal pattern of spike discharges, i.e., the phase-locked responses of barrel cortex neurons. In addition, oscillatory gamma band activity was induced during high-frequency stimulation. The pivotal descriptor of the amplitude of whisker displacement, the velocity, is reflected in the rate of spike discharges. While phase-locked discharges occurred over the entire range of frequencies tested (10–600 Hz), the discharge rate increased with stimulus velocity only up to about 60 µm/ms, saturating at a mean rate of ~117 spikes/s. In addition, the results show that whisker movements of more than 500 Hz bandwidth may be encoded by phase-locked responses of small groups of cortical neurons. Thus, even single whiskers may transmit information about wide ranges of textural components owing to their set of different types of hair follicle mechanoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andermann ML, Ritt J, Neimark MA, Moore CI (2004) Neural correlates of vibrissa resonance: band-pass and somatotopic representation of high-frequency stimuli. Neuron 42:451–463

    Article  CAS  PubMed  Google Scholar 

  • Andres KH (1966) Über die Feinstruktur der Rezeptoren in Sinushaaren. Z Zellforsch 75:339–365

    Article  CAS  PubMed  Google Scholar 

  • Arabzadeh E, Petersen RS, Diamond ME (2003) Encoding of whisker vibration by rat barrel cortex neurons: implications for texture discrimination. J Neurosci 23:9146–9154

    CAS  PubMed  Google Scholar 

  • Arabzadeh E, Panzeri S, Diamond ME (2006) Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway. J Neurosci 26:9216–9226

    Article  CAS  PubMed  Google Scholar 

  • Bale MR, Davies K, Freeman OJ, Ince RAA, Petersen RS (2013) Low-dimensional sensory feature representation by trigeminal primary afferents. J Neurosci 33:12003–12012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boloori A-R, Jenks RA, Desbordes G, Stanley GB (2010) Encoding and decoding cortical representations of tactile features in the vibrissa system. J Neurosci 30:9990–10005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brecht M, Sakmann B (2002) Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction. J Physiol 538:495–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–1627

    Article  CAS  PubMed  Google Scholar 

  • Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648

    CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA (2002) Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. J Physiol 539:567–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA (2004) Absence of rapid sensory adaptation in neocortex during information processing states. Neuron 41:455–464

    Article  CAS  PubMed  Google Scholar 

  • Deschênes M, Timofeeva E, Lavallee P (2003) The relay of high-frequency sensory signals in the whisker-to-barreloid pathway. J Neurosci 23:6778–6787

    PubMed  Google Scholar 

  • Engel AK, König P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226

    Article  CAS  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  CAS  PubMed  Google Scholar 

  • Ewert TAS, Vahle-Hinc C, Engel AK (2008) High-frequency whisker vibration is encoded by phase-locked responses of neurons in the rat’s barrel cortex. J Neurosci 28:5359–5368

    Article  CAS  PubMed  Google Scholar 

  • Garabedian CE, Jones SR, Merzenich MM, Dale A, Moore CI (2003) Band-pass response properties of rat SI neurons. J Neurophysiol 90:1379–1391

    Article  PubMed  Google Scholar 

  • Gibson JM, Welker WI (1983) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res 1:95–117

    Article  CAS  PubMed  Google Scholar 

  • Gil Z, Connors BW, Amitai Y (1999) Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron 23:385–397

    Article  CAS  PubMed  Google Scholar 

  • Gottschaldt KM, Vahle-Hinz C (1981) Merkel cell receptors: structure and transducer function. Science 214:183–186

    Article  CAS  PubMed  Google Scholar 

  • Guic-Robles E, Valdivieso C, Guajardo G (1989) Rats can learn a roughness discrimination using only their vibrissal system. Behav Brain Res 31:285–289

    Article  CAS  PubMed  Google Scholar 

  • Hamada Y, Miyashita E, Tanaka H (1999) Gamma-band oscillations in the “barrel cortex” precede rat’s exploratory whisking. Neuroscience 88:667–671

    Article  CAS  PubMed  Google Scholar 

  • Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23:6510–6519

    CAS  PubMed  Google Scholar 

  • Hernandez A, Zainos A, Romo R (2000) Neural correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci 97:6191–6196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrmann CS, Munk MHJ, Engel AK (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8:347–355

    Article  PubMed  Google Scholar 

  • Hipp J, Arabzadeh E, Zorkin E, Conradt J, Kayser C, Diamond ME (2006) Texture signals in whisker vibrations. J Neurophysiol 95:1792–1799

    Article  PubMed  Google Scholar 

  • Hollins M, Bensmaia SJ (2007) The coding of roughness. Can J Exp Psychol 61:184–195

    Article  PubMed  Google Scholar 

  • Jadhav SP, Feldman DE (2010) Texture coding in the whisker system. Curr Opin Neurobiol 20:313–318

    Article  CAS  PubMed  Google Scholar 

  • Jadhav SP, Wolfe J, Feldman DE (2009) Sparse temporal coding of elementary tactile features during active whisker sensation. Nat Neurosci 12:792–800

    Article  CAS  PubMed  Google Scholar 

  • Jones MS, Barth DS (1997) Sensory-evoked high-frequency (γ-band) oscillating potentials in somatosensory cortex of the unanesthetized rat. Brain Res 768:167–176

    Article  CAS  PubMed  Google Scholar 

  • Jones LM, Depireux DA, Simons DJ, Keller A (2004a) Robust temporal coding in the trigeminal system. Science 304:1986–1989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones LM, Lee S, Trageser JC, Simons DJ, Keller A (2004b) Precise temporal responses in whisker trigeminal neurons. J Neurophysiol 92:665–668

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones LM, Kwegyir-Afful EE, Keller A (2006) Whisker primary afferents encode temporal frequency of moving gratings. Somatosens Mot Res 23:45–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Khatri V, Hartings JA, Simons DJ (2004) Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. J Neurophysiol 92:3244–3254

    Article  CAS  PubMed  Google Scholar 

  • Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16:435–444

    Article  CAS  PubMed  Google Scholar 

  • Krupa DJ, Matell MS, Brisben AJ, Oliveira LM, Nicolelis MAL (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 21:5752–5763

    CAS  PubMed  Google Scholar 

  • Lichtenstein SH, Carvell GE, Simons DJ (1990) Responses of rat trigemnal ganglion neurons to movements of vibrissae in different directions. Somatosens Motor Res 7:47–65

    Article  CAS  Google Scholar 

  • Lottem E, Azouz R (2008) Dynamic translation of surface coarseness into whisker vibrations. J Neurophysiol 100:2852–2865

    Article  PubMed  Google Scholar 

  • Lottem E, Azouz R (2009) Mechanisms of tactile information transmission through whisker vibrations. J Neurosci 29:11686–11697

    Article  CAS  PubMed  Google Scholar 

  • Luna R, Hernandez A, Brody CD, Romo R (2005) Neural codes for perceptual discrimination in primary somatosensory cortex. Nat Neurosci 8:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom BN, Fairhall AL, Maravall M (2010) Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo. J Neurosci 30:5071–5077

    Article  CAS  PubMed  Google Scholar 

  • Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME (2007) Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol 5:0323–0334

    Article  CAS  Google Scholar 

  • Melzer P, Champney GC, Maguire MJ, Ebner FF (2006) Rate code and temporal code for frequency of whisker stimulation in rat primary and secondary somatic sensory cortex. Exp Brain Res 172:370–386

    Article  PubMed  Google Scholar 

  • Metha SB, Kleinfeld D (2004) Frisking the whiskers: patterned sensory input in the rat vibrissa system. Neuron 41:181–184

    Article  Google Scholar 

  • Miyashita E, Hamada Y (1996) The ‘functional connection’ of neurones in relation to behavioural states in rats. NeuroReport 7:2407–2411

    Article  CAS  PubMed  Google Scholar 

  • Montemurro MA, Panzeri S, Maravall M, Alenda A, Bale MR, Brambilla M, Petersen RS (2007) Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. J Neurophys 98:1871–1882

    Article  Google Scholar 

  • Moore CI (2004) Frequency-dependent processing in the vibrissa sensory system. J Neurophysiol 91:2390–2399

    Article  PubMed  Google Scholar 

  • Neimark MA, Andermann ML, Hopfield JJ, Moore CI (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23:6499–6509

    CAS  PubMed  Google Scholar 

  • Nicolelis MAL, Baccala LA, Lin RCS, Chapin JK (1995) Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268:1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Panzeri S, Brunel N, Logothetis NK, Kayser C (2010) Sensory neural codes using multiplexed temporal scales. Trends Neurosci 33:111–120

    Article  CAS  PubMed  Google Scholar 

  • Petersen RS, Panzeri S, Maravall M (2009) Neural coding and contextual influences in the whisker system. Biol Cybern 100:427–446

    Article  PubMed  Google Scholar 

  • Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385:149–184

    Article  CAS  PubMed  Google Scholar 

  • Ritt JT, Andermann ML, Moore CI (2008) Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57:599–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salinas E, Hernandez A, Zainos A, Romo R (2000) Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci 20:5503–5515

    CAS  PubMed  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  CAS  PubMed  Google Scholar 

  • Stoelzel CR, Bereshpolova Y, Swadlow HA (2009) Stability of thalamocortical synaptic transmission across awake brain states. J Neurosci 29:6851–6859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stüttgen MC, Rüter J, Schwarz C (2006) Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26:7933–7941

    Article  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    Article  PubMed  Google Scholar 

  • Vahle-Hinz C, Gottschaldt KM (1983) Principal differences in the organization of the thalamic face representation in rodents and felids. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration in the thalamus. Elsevier, Amsterdam, pp 125–145

    Google Scholar 

  • Vahle-Hinz C, Detsch O, Siemers M, Kochs E (2007) Contributions of GABAergic and glutamatergic mechanisms to isoflurane-induced suppression of thalamic somatosensory information transfer. Exp Brain Res 176:159–172

    Article  CAS  PubMed  Google Scholar 

  • Wolfe J, Hill DN, Pahlavan S, Drew PJ, Kleinfeld D, Feldman DE (2008) Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol 6:1661–1677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union (IST-2000-28127) and the German Research Foundation (SFB 936/Z1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Vahle-Hinz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewert, T.A.S., Möller, J., Engel, A.K. et al. Wideband phase locking to modulated whisker vibration point to a temporal code for texture in the rat’s barrel cortex. Exp Brain Res 233, 2869–2882 (2015). https://doi.org/10.1007/s00221-015-4357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4357-y

Keywords

Navigation