Skip to main content

Advertisement

Log in

Differential changes in gingival somatosensory sensitivity after painful electrical tooth stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We aimed to evaluate the effect of painful tooth stimulation on gingival somatosensory sensitivity of healthy volunteers in a randomized, controlled design. Thirteen healthy volunteers (six women, seven men; 28.4 ± 5.0 years) were included for two experimental sessions of electrical tooth stimulation: painful tooth stimulation and tooth stimulation below the sensory threshold (control). Eight of the human subjects participated in a third session without tooth stimulation. In all sessions, the somatosensory sensitivity of the gingiva adjacent to the stimulated tooth was evaluated with a standardized battery of quantitative sensory tests (QST) before, immediately after and 30 min after tooth stimulation. Painful tooth stimulation evoked significant decreases in warmth and heat pain thresholds (P < 0.001) as well as pressure pain thresholds (increased sensitivity) (P = 0.024) and increases in mechanical detection thresholds (decreased sensitivity) (P < 0.050). Similar thermal threshold changes (P < 0.019) but no mechanical changes were found after tooth stimulation below the sensory threshold (P > 0.086). No QST changes were detected in the session without tooth stimulation (P > 0.060). In conclusion, modest increased gingival sensitivity to warmth, painful heat and pressure stimuli as well as desensitization to non-painful mechanical stimulation were demonstrated after tooth stimulation. This suggests involvement of competing heterotopic facilitatory and inhibitory mechanisms. Furthermore, stimulation below the sensory threshold induced similar thermal sensitization suggesting the possibility of activation of axon-reflex-like mechanisms even at intensities below the perception threshold. These findings may have implications for interpretation of somatosensory results in patients with chronic intraoral pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avellan NL, Sorsa T, Tervahartiala T, Mantyla P, Forster C, Kemppainen P (2005) Painful tooth stimulation elevates matrix metalloproteinase-8 levels locally in human gingival crevicular fluid. J Dent Res 84:335–339

    Article  CAS  PubMed  Google Scholar 

  • Avellan NL, Sorsa T, Tervahartiala T, Forster C, Kemppainen P (2008) Experimental tooth pain elevates substance P and matrix metalloproteinase-8 levels in human gingival crevice fluid. Acta Odontol Scand 66:18–22

    Article  CAS  PubMed  Google Scholar 

  • Baad-Hansen L (2008) Atypical odontalgia—pathophysiology and clinical management. J Oral Rehabil 35:1–11

    Article  CAS  PubMed  Google Scholar 

  • Baad-Hansen L, Leijon G, Svensson P, List T (2008) Comparison of clinical findings and psychosocial factors in patients with atypical odontalgia and temporomandibular disorders. J Orofac Pain 22:7–14

    PubMed  Google Scholar 

  • Baad-Hansen L, Pigg M, Ivanovic SE, Faris H, List T, Drangsholt M, Svensson P (2013a) Chairside intraoral qualitative somatosensory testing: reliability and comparison between patients with atypical odontalgia and healthy controls. J Orofac Pain 27:165–170

    Article  PubMed  Google Scholar 

  • Baad-Hansen L, Pigg M, Ivanovic SE, Faris H, List T, Drangsholt M, Svensson P (2013b) Intraoral somatosensory abnormalities in patients with atypical odontalgia-a controlled multicenter quantitative sensory testing study. Pain 154:1287–1294

    Article  PubMed Central  PubMed  Google Scholar 

  • Baad-Hansen L, Pigg M, Yang G, List T, Svensson P, Drangsholt M (2014) Reliability of intra-oral quantitative sensory testing (QST) in patients with atypical odontalgia and healthy controls—a multicentre study. J Oral Rehabil. doi:10.1111/joor.12245

  • Benoliel R, Zadik Y, Eliav E, Sharav Y (2012) Peripheral painful traumatic trigeminal neuropathy: clinical features in 91 cases and proposal of novel diagnostic criteria. J Orofac Pain 26:49–58

    PubMed  Google Scholar 

  • Brown AC, Beeler WJ, Kloka AC, Fields RW (1985) Spatial summation of pre-pain and pain in human teeth. Pain 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Chiang CY, Park SJ, Kwan CL, Hu JW, Sessle BJ (1998) NMDA receptor mechanisms contribute to neuroplasticity induced in caudalis nociceptive neurons by tooth pulp stimulation. J Neurophysiol 80:2621–2631

    CAS  PubMed  Google Scholar 

  • De Col R, Maihöfner C (2008) Centrally mediated sensory decline induced by differential C-fiber stimulation. Pain 138:556–564

    Article  PubMed  Google Scholar 

  • Forssell H, Jääskeläinen S, List T, Svensson P, Baad-Hansen L (2014) An update on pathophysiological mechanisms related to idiopathic orofacial pain conditions with implications for management. J Oral Rehabil. doi:10.1111/joor.12256

  • Gracely RH, Dubner R, McGrath PA (1979) Narcotic analgesia: fentanyl reduces the intensity but not the unpleasantness of painful tooth pulp sensations. Science 203:1261–1263

    Article  CAS  PubMed  Google Scholar 

  • Gracely RH, Dubner R, McGrath PA (1982) Fentanyl reduces the intensity of painful tooth pulp sensations: controlling for detection of active drugs. Anesth Analg 61:751–755

    CAS  PubMed  Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    Article  CAS  PubMed  Google Scholar 

  • Hu JW, Sessle BJ (1989) Effects of tooth pulp deafferentation on nociceptive and nonnociceptive neurons of the feline trigeminal subnucleus caudalis (medullary dorsal horn). J Neurophysiol 61:1197–1206

    CAS  PubMed  Google Scholar 

  • Hu JW, Dostrovsky JO, Lenz YE, Ball GJ, Sessle BJ (1986) Tooth pulp deafferentation is associated with functional alterations in the properties of neurons in the trigeminal spinal tract nucleus. J Neurophysiol 56:1650–1668

    CAS  PubMed  Google Scholar 

  • Hu JW, Sharav Y, Sessle BJ (1990) Effects of one- or two-stage deafferentation of mandibular and maxillary tooth pulps on the functional properties of trigeminal brainstem neurons. Brain Res 516:271–279

    Article  CAS  PubMed  Google Scholar 

  • Hu JW, Shohara E, Sessle BJ (1992) Patterns and plasticity of dental afferent inputs to trigeminal (V) brainstem neurons in kittens. Proc Finn Dent Soc 88(Suppl 1):563–569

    PubMed  Google Scholar 

  • Janig W, Zimmermann M (1971) Presynaptic depolarization of myelinated afferent fibres evoked by stimulation of cutaneous C fibres. J Physiol 214:29–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juhl GI, Jensen TS, Nørholt SE, Svensson P (2008) Central sensitization phenomena after third molar surgery: a quantitative sensory testing study. Eur J Pain 12:116–127

    Article  PubMed  Google Scholar 

  • Kemppainen P, Leppanen H, Jyvasjarvi E, Pertovaara A (1994) Blood flow increase in the orofacial area of humans induced by painful stimulation. Brain Res Bull 33:655–662

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen P, Forster C, Handwerker HO (2001) The importance of stimulus site and intensity in differences of pain-induced vascular reflexes in human orofacial regions. Pain 91:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen P, Avellan NL, Handwerker HO, Forster C (2003) Differences between tooth stimulation and capsaicin-induced neurogenic vasodilatation in human gingiva. J Dent Res 82:303–307

    Article  CAS  PubMed  Google Scholar 

  • List T, Leijon G, Svensson P (2008) Somatosensory abnormalities in atypical odontalgia: a case-control study. Pain 139:333–341

    Article  PubMed  Google Scholar 

  • Magerl W, Treede RD (2004) Secondary tactile hypoesthesia: a novel type of pain-induced somatosensory plasticity in human subjects. Neurosci Lett 361:136–139

    Article  CAS  PubMed  Google Scholar 

  • Magerl W, Szolcsanyi J, Westerman RA, Handwerker HO (1987) Laser Doppler measurements of skin vasodilation elicited by percutaneous electrical stimulation of nociceptors in humans. Neurosci Lett 82:349–354

    Article  CAS  PubMed  Google Scholar 

  • Maier C, Baron R, Tolle TR, Binder A, Birbaumer N, Birklein F, Gierthmuhlen J, Flor H, Geber C, Huge V, Krumova EK, Landwehrmeyer GB, Magerl W, Maihöfner C, Richter H, Rolke R, Scherens A, Schwarz A, Sommer C, Tronnier V, Uceyler N, Valet M, Wasner G, Treede RD (2010) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150:439–450

    Article  CAS  PubMed  Google Scholar 

  • Matthews B, Baxter J, Watts S (1976) Sensory and reflex responses to tooth pulp stimulation in man. Brain Res 113:83–94

    Article  CAS  PubMed  Google Scholar 

  • McGrath PA, Sharav Y, Dubner R, Gracely RH (1981) Masseter inhibitory periods and sensations evoked by electrical tooth pulp stimulation. Pain 10:1–17

    Article  CAS  PubMed  Google Scholar 

  • McGrath PA, Gracely RH, Dubner R, Heft MW (1983) Non-pain and pain sensations evoked by tooth pulp stimulation. Pain 15:377–388

    Article  CAS  PubMed  Google Scholar 

  • Melis M, Secci S (2007) Diagnosis and treatment of atypical odontalgia: a review of the literature and two case reports. J Contemp Dent Pract 8:81–89

    PubMed  Google Scholar 

  • Melis M, Lobo SL, Ceneviz C, Zawawi K, Al Badawi E, Maloney G, Mehta N (2003) Atypical odontalgia: a review of the literature. Headache 43:1060–1074

    Article  PubMed  Google Scholar 

  • Motohashi K, Umino M, Fujii Y (2002) An experimental system for a heterotopic pain stimulation study in humans. Brain Res Brain Res Protoc 10:31–40

    Article  PubMed  Google Scholar 

  • Nixdorf DR, Drangsholt MT, Ettlin DA, Gaul C, De Leeuw R, Svensson P, Zakrzewska JM, De Laat A, Ceusters W (2012) Classifying orofacial pains: a new proposal of taxonomy based on ontology. J Oral Rehabil 39:161–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SJ, Chiang CY, Hu JW, Sessle BJ (2001) Neuroplasticity induced by tooth pulp stimulation in trigeminal subnucleus oralis involves NMDA receptor mechanisms. J Neurophysiol 85:1836–1846

    CAS  PubMed  Google Scholar 

  • Pigg M, Baad-Hansen L, Svensson P, Drangsholt M, List T (2010) Reliability of intraoral quantitative sensory testing (QST). Pain 148:220–226

    Article  PubMed  Google Scholar 

  • Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, Treede RD (2006) Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain 10:77–88

    Article  CAS  PubMed  Google Scholar 

  • Sessle BJ (2000) Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med 11:57–91

    Article  CAS  PubMed  Google Scholar 

  • Sharav Y, McGrath PA, Dubner R (1982) Masseter inhibitory periods and sensations evoked by electrical tooth pulp stimulation in patients with oral-facial pain and mandibular dysfunction. Arch Oral Biol 27:305–310

    Article  CAS  PubMed  Google Scholar 

  • Svensson P, Baad-Hansen L, Pigg M, List T, Eliav E, Ettlin D, Michelotti A, Tsukiyama Y, Matsuka Y, Jääskeläinen SK, Essick G, Greenspan JD, Drangsholt M (2011) Guidelines and recommendations for assessment of somatosensory function in oro-facial pain conditions—a taskforce report. J Oral Rehabil 38:366–394

    Article  CAS  PubMed  Google Scholar 

  • Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain redefinition and a grading system for clinical and research purposes. Neurology 70:1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Virtanen ASJ, Huopaniemi T, Närhi M, Pertovaara A, Wallgren K (1987) The effect of temporal parameters on subjective sensations evoked by electrical tooth stimulation. Pain 30:361–371

    Article  CAS  PubMed  Google Scholar 

  • Woda A, Pionchon P (1999) A unified concept of idiopathic orofacial pain: clinical features. J Orofac Pain 13:172–184

    CAS  PubMed  Google Scholar 

  • Woda A, Pionchon P (2000) A unified concept of idiopathic orofacial pain: pathophysiologic features. J Orofac Pain 14:196–212

    CAS  PubMed  Google Scholar 

  • Woolf CJ (2004) Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med 140:441–451

    Article  PubMed  Google Scholar 

  • Zimmermann M (1968) Dorsal root potentials after C-fiber stimulation. Science 160:896–898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Aarhus University Research Foundation, Beijing Stomatological Hospital research funding 13-09-06 and Capital Medical University research funding 14-JL-77.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lene Baad-Hansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baad-Hansen, L., Lu, S., Kemppainen, P. et al. Differential changes in gingival somatosensory sensitivity after painful electrical tooth stimulation. Exp Brain Res 233, 1109–1118 (2015). https://doi.org/10.1007/s00221-014-4186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4186-4

Keywords

Navigation