Skip to main content
Log in

Interaction of brain areas of visual and vestibular simultaneous activity with fMRI

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Static body equilibrium is an essential requisite for human daily life. It is known that visual and vestibular systems must work together to support equilibrium. However, the relationship between these two systems is not fully understood. In this work, we present the results of a study which identify the interaction of brain areas that are involved with concurrent visual and vestibular inputs. The visual and the vestibular systems were individually and simultaneously stimulated, using flickering checkerboard (without movement stimulus) and galvanic current, during experiments of functional magnetic resonance imaging. Twenty-four right-handed and non-symptomatic subjects participated in this study. Single visual stimulation shows positive blood-oxygen-level-dependent (BOLD) responses (PBR) in the primary and associative visual cortices. Single vestibular stimulation shows PBR in the parieto-insular vestibular cortex, inferior parietal lobe, superior temporal gyrus, precentral gyrus and lobules V and VI of the cerebellar hemisphere. Simultaneous stimulation shows PBR in the middle and inferior frontal gyri and in the precentral gyrus. Vestibular- and somatosensory-related areas show negative BOLD responses (NBR) during simultaneous stimulation. NBR areas were also observed in the calcarine gyrus, lingual gyrus, cuneus and precuneus during simultaneous and single visual stimulations. For static visual and galvanic vestibular simultaneous stimulation, the reciprocal inhibitory visual–vestibular interaction pattern is observed in our results. The experimental results revealed interactions in frontal areas during concurrent visual–vestibular stimuli, which are affected by intermodal association areas in occipital, parietal, and temporal lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbarian S, Grüsser OJ, Guldin WO (1993) Corticofugal projections to the vestibular nuclei in squirrel monkeys: further evidence of multiple cortical vestibular fields. J Comp Neurol 332:89–104

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Grüsser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421–437

    Article  CAS  PubMed  Google Scholar 

  • Amorim P (2002) Mini international neuropsychiatric interview (MINI): validation of a short structured diagnostic psychiatric interview. Rev Bras Psiquiatr 22:106–115

    Article  Google Scholar 

  • Anderson TJ, Jenkins IH, Brooks DJ et al (1994) Cortical control of saccades and fixation in man. A PET study. Brain 117:1073–1084

    Article  PubMed  Google Scholar 

  • Aw ST, Todd MJ, Halmagyi GM (2006) Latency and initiation of the human vestibuloocular reflex to pulsed galvanic stimulation. J Neurophysiol 96:925–930

    Article  PubMed  Google Scholar 

  • Baier B, Conrad J, Zu Eulenburg P et al (2013) Insular strokes cause no vestibular deficits. Stroke 44:2604–2606

    Article  PubMed  Google Scholar 

  • Barton JJ, Simpson T, Kiriakopoulos E et al (1996) Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception. Ann Neurol 40:387–398

    Article  CAS  PubMed  Google Scholar 

  • Bennett CM, Wolford GL, Miller MB (2009) The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci 4:417–422

    Article  PubMed Central  PubMed  Google Scholar 

  • Bense S, Stephan T, Yousry TA et al (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85(2):886–899

    CAS  PubMed  Google Scholar 

  • Bianciardi M, Fukunaga M, van Gelderen P et al (2011) Negative BOLD–fMRI signals in large cerebral veins. J Cereb Blood Flow Metab 31:401–412

    Article  PubMed Central  PubMed  Google Scholar 

  • Boisgueheneuc F, Levy R, Volle E et al (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129:3315–3328

    Article  PubMed  Google Scholar 

  • Bottini G, Sterzi R, Paulesu E et al (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99:164–169

    Article  CAS  PubMed  Google Scholar 

  • Bottini G, Paulesu E, Gandola M et al (2005) Left caloric vestibular stimulation ameliorates right hemianesthesia. Neurology 65:1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Bottini G, Gandola M, Sedda A, Ferrè ER (2013) Caloric vestibular stimulation: interaction between somatosensory system and vestibular apparatus. Front Integr Neurosci 7:1–3

    Article  Google Scholar 

  • Braddick OJ, O’Brien JMD, Wattam-Bell J et al (2001) Brain areas sensitive to coherent visual motion. Percept 30:61–72

    Article  CAS  Google Scholar 

  • Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312

    Article  CAS  PubMed  Google Scholar 

  • Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758

    Article  PubMed  Google Scholar 

  • Bremmer F (2001) Space coding in primate posterior parietal cortex. Neuroimage 14:S46–S51

    Article  CAS  PubMed  Google Scholar 

  • Bressler D, Spotswood N, Whitney D (2007) Negative BOLD fMRI response in the visual cortex carries precise stimulus-specific information. PLoS ONE 2:e410

    Article  PubMed Central  PubMed  Google Scholar 

  • Brett M, Anton J, Valabregue R, Poline J (2002) Region of interest analysis using an SPM toolbox [abstract]. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan

  • Cambraia S (2003) The concentrated attention test. Vetor, São Paulo

    Google Scholar 

  • Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20:1964–1973

    Article  PubMed Central  PubMed  Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E et al (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7:1–13

    Article  Google Scholar 

  • Delis D, Kaplan E, Kramer J (2001) Delis-Kaplan executive function system: examiner’s manual. The Psychological Corporation, São António

    Google Scholar 

  • Della-Justina HM, Postorello BF, Santos-Pontelli TEG et al (2008) Human variability of fMRI brain activation in response to oculomotor stimuli. Brain Topogr 20:113–121

    Article  PubMed  Google Scholar 

  • Della-Justina HM, Manczak T, Winkler AM et al (2014) Galvanic vestibular stimulator for fMRI studies. Braz J Biomed Eng 30:70–82

    Google Scholar 

  • Deutschländer A, Bense S, Stephan T et al (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 16:92–103

    Article  PubMed  Google Scholar 

  • Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Brain 121:1479–1495

    Article  PubMed  Google Scholar 

  • Dieterich M, Bense S, Lutz S et al (2003a) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M, Bense S, Stephan T et al (2003b) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127

    Article  PubMed  Google Scholar 

  • Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments. Neuron 57:11–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eickhoff SB, Stephan K, Mohlberg H et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Heim S, Zilles K, Amunts K (2006a) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32:570–582

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Weiss PH, Amunts K et al (2006b) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S et al (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36:511–521

    Article  PubMed  Google Scholar 

  • Fasold O, von Brevern M, Kuhberg M et al (2002) Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17:1384–1393

    Article  PubMed  Google Scholar 

  • Ferrè ER, Bottini G, Haggard P (2011a) Vestibular modulation of somatosensory perception. Eur J Neurosci 34:1337–1344

    Article  PubMed  Google Scholar 

  • Ferrè ER, Sedda A, Gandola M, Bottini G (2011b) How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study. Exp Brain Res 208:29–38

    Article  PubMed  Google Scholar 

  • Ferrè ER, Bottini G, Haggard P (2012) Vestibular inputs modulate somatosensory cortical processing. Brain Struct Funct 217:859–864

    Article  PubMed  Google Scholar 

  • Ferrè ER, Day BL, Bottini G, Haggard P (2013) How the vestibular system interacts with somatosensory perception: a sham-controlled study with galvanic vestibular stimulation. Neurosci Lett 550:35–40

    Article  PubMed Central  PubMed  Google Scholar 

  • Fink G, Marshall JC, Weiss PH et al (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 20:1505–1517

    Article  PubMed  Google Scholar 

  • Fox PT, Raichle ME (1985) Stimulus rate determines regional brain blood flow in striate cortex. Ann Neurol 17:303–305

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ et al (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9:416–429

    Article  CAS  PubMed  Google Scholar 

  • Guldin W, Grüsser OJ (1996) The anatomy of the vestibular cortices of primates. In: Collard M, Jeannerod M, Christen Y (eds) Le cortex vestibulaire. Irvinn, Paris, pp 17–26

    Google Scholar 

  • Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:254–259

    Article  CAS  PubMed  Google Scholar 

  • Guldin W, Akbarian S, Grüsser OJ (1992) Cortico–cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J Comp Neurol 326:375–401

    Article  CAS  PubMed  Google Scholar 

  • Harel N, Lee SP, Nagaoka T et al (2002) Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 22:908–917

    Article  PubMed  Google Scholar 

  • Kahane P, Hoffmann D, Minotti L, Berthoz A (2003) Reappraisal of the human vestibular cortex by cortical electrical stimulation study. Ann Neurol 54:615–624

    Article  PubMed  Google Scholar 

  • Kleinschmidt A, Thilo KV, Büchel C et al (2002) Neural correlates of visual-motion perception as object- or self-motion. Neuroimage 16:873–882

    Article  PubMed  Google Scholar 

  • Lacquaniti F, Bosco G, Indovina I et al (2013) Visual gravitational motion and the vestibular system in humans. Front Integr Neurosci 7:1–12. doi:10.3389/fnint.2013.00101

    Article  Google Scholar 

  • Lobel E, Kleine JF, Le Bihan D et al (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80:2699–2709

    CAS  PubMed  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357:1003–1037

    Article  PubMed Central  PubMed  Google Scholar 

  • Lopez C, Halje P, Blanke O (2008) Body ownership and embodiment: vestibular and multisensory mechanisms. Clin Neurophysiol 38:149–161. doi:10.1016/j.neucli.2007.12.006

    Article  CAS  Google Scholar 

  • Lopez C, Blanke O, Mast FW (2012) The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 212:159–179. doi:10.1016/j.neuroscience.2012.03.028

    Article  CAS  PubMed  Google Scholar 

  • Macaluso E, Driver J (2005) Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28:264–271. doi:10.1016/j.tins.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  • MacDougall HG, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with galvanic vestibular stimulation. Exp Brain Res 172:208–220

    Article  PubMed  Google Scholar 

  • Marcelli V, Esposito F, Aragri A et al (2009) Spatio-temporal pattern of vestibular information processing after brief caloric stimulation. Eur J Radiol 70:312–316

    Article  PubMed  Google Scholar 

  • Moore ST, MacDougall HG, Peters BT et al (2006) Modeling locomotor dysfunction following spaceflight with galvanic vestibular stimulation. Exp Brain Res 174:647–659

    Article  PubMed  Google Scholar 

  • Naito Y, Tateya I, Hirano S et al (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 126:1562–1578

    Article  PubMed  Google Scholar 

  • Nigmatullina Y, Hellyer PJ, Nachev P et al (2013) The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers. Cereb Cortex. doi:10.1093/cercor/bht266 [Epub ahead of print]

    PubMed  Google Scholar 

  • Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neurophysiologia 9:97–113

    CAS  Google Scholar 

  • Owen AM (1997) The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci 9:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Pasley BN, Inglis BA, Freeman RD (2007) Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. Neuroimage 36:269–276

    Article  PubMed Central  PubMed  Google Scholar 

  • Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471

    CAS  PubMed  Google Scholar 

  • Probst T, Wist E (1990) Electrophysiological evidence for visual–vestibular interaction in man. Neurosci Lett 108:255–260

    Article  CAS  PubMed  Google Scholar 

  • Probst T, Straube A, Bles W (1985) Differential effects of ambivalent visual–vestibular-somatosensory stimulation on the perception of self-motion. Behav Brain Res 16:71–79

    Article  CAS  PubMed  Google Scholar 

  • Probst T, Brandt T, Degner D (1986) Object-motion detection affected by concurrent self-motion perception: psychophysics of a new phenomenon. Behav Brain Res 22:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ronchi R, Rode G, Cotton F et al (2013) Remission of anosognosia for right hemiplegia and neglect after caloric vestibular stimulation. Restor Neurol Neurosci 31:19–24

  • Schneider E, Glasauer S, Dieterich M (2000) Central processing of human ocular torsion analyzed by galvanic vestibular stimulation. NeuroReport 11:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Schubert T, Szameitat AJ (2003) Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Cogn Brain Res 17:733–746

    Article  Google Scholar 

  • Seemungal BM, Guzman-Lopez J, Arshad Q et al (2013) Vestibular activation differentially modulates human early visual cortex and V5/MT excitability and response entropy. Cereb Cortex 23:12–19

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaikh AG, Palla A, Marti S et al. (2013) Role of cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities. Cerebellum 12:97–107. doi:10.1007/s12311-012-0401-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J et al (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36:1195–1210

    Article  CAS  PubMed  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kim S, Kim T-S (2003) Correlation between BOLD–fMRI and EEG signal changes in response to visual stimulus frequency in humans. Magn Reson Med 49:108–114

    Article  PubMed  Google Scholar 

  • Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22:1068–1077

    Article  PubMed  Google Scholar 

  • Stephan T, Deutschländer A, Nolte A et al (2005) Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage 26:721–732

    Article  PubMed  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501. doi:10.1016/j.neuroimage.2008.08.039

    Article  PubMed  Google Scholar 

  • Suzuki M, Kitano H, Ito R et al (2001) Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Cogn Brain Res 12:441–449

    Article  CAS  Google Scholar 

  • Vallar G (1998) Spatial hemineglect in humans. Trends Cogn Sci 2:87–97

    Article  CAS  PubMed  Google Scholar 

  • Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194

    Article  CAS  PubMed  Google Scholar 

  • Wardman DL, Taylor JL, Fitzpatrick RC (2003) Effects of galvanic vestibular stimulation on human posture and perception while standing. J Physiol 551:1033–1042. doi:10.1113/jphysiol.2003.045971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson SRD, Brizuela AE, Curthoys IS et al (1998) Maintained ocular torsion produced by bilateral and unilateral galvanic (DC) vestibular stimulation in humans. Exp Brain Res 122:453–458

    Article  CAS  PubMed  Google Scholar 

  • Wechsler D (2004) The Wechsler adult intelligence scale. Translation and validation of Brazilian version. Casa do Psicólogo, São Paulo

    Google Scholar 

  • Weeks RA, Aziz-Sultan A, Bushara KO et al (1999) A PET study of human auditory spatial processing. Neurosci Lett 262:155–158

    Article  CAS  PubMed  Google Scholar 

  • Zink R, Bucher SF, Weiss A et al (1998) Effects of galvanic vestibular stimulation on otolithic and semicircular canal eye movements and perceived vertical. Electroencephalogr Clin Neurophysiol 107:200–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CAPES—Coordenação de Aperfeiçoamente de Pessoal de Nível Superior—and CNPq—Conselho Nacional de Desenvolvimento Cientíco e Tecnológico, Brazil—for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellen M. Della-Justina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della-Justina, H.M., Gamba, H.R., Lukasova, K. et al. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Exp Brain Res 233, 237–252 (2015). https://doi.org/10.1007/s00221-014-4107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4107-6

Keywords

Navigation