Skip to main content
Log in

Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2–40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the ‘small amplitude’ linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37 % of the recorded peak displacements in RT and 79 % in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including nonlinear muscular (e.g., Hill and Huxley) and reflexive components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Axelson HW, Hagbarth KE (2001) Human motor control consequences of thixotropic changes in muscular short-range stiffness. J Physiol 535(1):279–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cathers I, O’Dwyer N, Neilson P (1999) Dependence of stretch reflexes on amplitude and bandwidth of stretch in human wrist muscle. Exp Brain Res 129(2):278–287

    Article  CAS  PubMed  Google Scholar 

  • Cole GK, van den Bogert A, Herzog W, Gerritsen GKM (1996) Modelling of force production in skeletal muscle undergoing stretch. J Biomech 2(8):1091–1104

    Article  Google Scholar 

  • Croft AC, Philippens MM (2007) The RID2 biofidelic rear impact dummy: a pilot study using human subjects in low speed rear impact full scale crash tests. Accid Anal Prev 39(2):340–346

    Article  PubMed  Google Scholar 

  • de Vlugt E, Schouten AC, van der Helm FCT (2002) Adaptation of reflexive feedback during arm posture to different environments. Biol Cybern 87(1):10–26

    Article  PubMed  Google Scholar 

  • de Vlugt E, Schouten AC, van der Helm FC, Teerhuis PC, Brouwn GG (2003) A force-controlled planar haptic device for movement control analysis of the human arm. J Neurosci Methods 129(2):151–168

    Article  PubMed  Google Scholar 

  • de Vlugt E, Schouten AC, van der Helm FCT (2006) Quantification of intrinsic and reflexive properties during multijoint arm posture. J Neurosci Methods 155(2):328–349

    Article  PubMed  Google Scholar 

  • de Vlugt E, van Eesbeek S, Baines P, Hilte J, Meskers CG, De Groot JH (2011) Short range stiffness elastic limit depends on joint velocity. J Biomech 44:2106–2112

    Article  PubMed  Google Scholar 

  • Doemges F, Rack PMH (1992a) Changes in the stretch reflex of the human first dorsal interosseous muscle during different tasks. J Physiol (Lond) 447:563–573

    Article  CAS  Google Scholar 

  • Doemges F, Rack PMH (1992b) Task-dependent changes in the response of human wrist joints to mechanical disturbance. J Physiol (Lond) 447:575–585

    Article  CAS  Google Scholar 

  • Forbes PA, de Bruijn E, Schouten AC, van der Helm FCT, Happee R (2013) Dependency of human neck reflex responses on the bandwidth of pseudorandom anterior–posterior torso perturbations. Exp Brain Res 226(1):1–14

    Article  PubMed  Google Scholar 

  • Franklin DW, Liaw G, Milner TE, Osu R, Burdet E, Kawato M (2007) Endpoint stiffness of the arm is directionally tuned to instability in the environment. J Neurosci 27(29):7705–7716

    Article  CAS  PubMed  Google Scholar 

  • Gollhofer A, Schöpp A, Rapp W, Stroinik V (1997) Changes in reflex excitability following isometric contraction in humans. Eur J Appl Physiol 77(1):89–97

    Article  Google Scholar 

  • Halaki M, O’Dwyer N, Cathers I (2006) Systematic nonlinear relations between displacement amplitude and joint mechanics at the human wrist. J Biomech 39(12):2171–2182

    Article  PubMed  Google Scholar 

  • Halaki M, O’Dwyer N, Cathers I, Heritier S (2012) Systematic nonlinear relations between joint mechanics and the neural reflex response with changes in stretch amplitude at the wrist. J Biomech 45(16):2755–2762

    Article  PubMed  Google Scholar 

  • Hedenstierna S, Halldin P (2008) How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts. Spine 33(8):E236–E245

    Article  PubMed  Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52(5):315–331

    Article  CAS  PubMed  Google Scholar 

  • Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166

    CAS  PubMed  Google Scholar 

  • Kakuda N (2000) Response of human muscle spindle afferents to sinusoidal stretching with a wide range of amplitudes. J Physiol 527(2):397–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kearney RE, Hunter IW (1982) Dynamics of human ankle stiffness: variation with displacement amplitude. J Biomech 15(10):753–756

    Article  CAS  PubMed  Google Scholar 

  • Kearney RE, Hunter IW (1983) System identification of human triceps surae stretch reflex dynamics. Exp Brain Res 51(1):117–127

    Article  CAS  PubMed  Google Scholar 

  • Kearney RE, Hunter IW (1984) System identification of human stretch reflex dynamics: tibialis anterior. Exp Brain Res 56(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Kearney RE, Hunter IW (1988) Nonlinear identification of stretch reflex dynamics. Ann Biomed Eng 16:79–94

    Article  CAS  PubMed  Google Scholar 

  • Kearney RE, Stein RB, Parameswaran L (1997) Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans Biomed Eng 44(6):493–504

    Article  CAS  PubMed  Google Scholar 

  • Kirsch RF, Boskov D, Rymer WZ (1994) Muscle stiffness during transient and continuous movements of cat muscle: Perturbation characteristics and physiological relevance. IEEE Trans Biomed Eng 41(8):758–770

    Article  CAS  PubMed  Google Scholar 

  • Kurtzer IL, Pruszynski JA, Scott SH (2010) Long-latency and voluntary responses to an arm displacement can be rapidly attenuated by perturbation offset. J Neurophysiol 103:3195–3204

    Article  PubMed  Google Scholar 

  • Lakie M, Walsh EG, Wright GW (1984) Resonance at the wrist demonstrated by the use of a torque motor: an instrumental analysis of muscle tone in man. J Physiol 353(1):265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2007) The passive, human calf muscles in relation to standing: the non-linear decrease from short range to long range stiffness. J Physiol 584(2):661–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacKay WA, Crammond DJ, Kwan HC, Murphy JT (1986) Measurements of human forearm viscoelasticity. J Biomech 19(3):231–238

    Article  CAS  PubMed  Google Scholar 

  • Mileusnic MP, Brown IE, Lan N, Loeb GE (2006) Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. J Neurophysiol 96(4):1772–1788

    Article  PubMed  Google Scholar 

  • Mirbagheri MM, Barbeau H, Kearney RE (2000) Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp Brain Res 135(4):423–436

    Article  CAS  PubMed  Google Scholar 

  • Mugge W, Abbink DA, van der Helm FCT (2007) Reduced power method: how to evoke low-bandwidth behaviour while estimating full-bandwidth dynamics. In: IEEE 10th international conference on rehabilitation robotics, ICORR 2007, pp 575–581

  • Mugge W, Schuurmans J, Schouten AC, van der Helm FCT (2009) Sensory weighting of force and position feedback in human motor control tasks. J Neurosci 29(17):5476–5482

    Article  CAS  PubMed  Google Scholar 

  • Mugge W, Abbink DA, Schouten AC, De Wald JPA, van der Helm FCT (2010) A rigorous model of reflex function indicates that position and force feedback are flexibly tuned to position and force tasks. Exp Brain Res 200(3):325–340

    Article  PubMed Central  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5(10):2732–2743

    CAS  PubMed  Google Scholar 

  • Neilson PD, McCaughey J (1981) Effect of contraction level and magnitude of stretch on tonic stretch reflex transmission characteristics. J Neurol Neurosurg Psychiatry 44(11):1007–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Östh J, Brolin K, Happee R (2012) Active muscle response using feedback control of a finite element human arm model. Comput Methods Biomech Biomed Eng 15(4):347–361

    Article  Google Scholar 

  • Perreault EJ, Kirsch RF, Crago PE (2001) Effects of voluntary force generation on the elastic components of endpoint stiffness. Exp Brain Res 141:312–323

    Article  CAS  PubMed  Google Scholar 

  • Pruszynski JA, Kurtzer I, Lillicrap TP, Scott SH (2009) Temporal evolution of “automatic gain-scaling”. J Neurophysiol 102:992–1003

    Article  PubMed Central  PubMed  Google Scholar 

  • Schouten AC, de Vlugt E, van Hilten JJB, van der Helm FCT (2008) Quantifying proprioceptive reflexes during position control of the human arm. IEEE Trans Biomed Eng 55(1):311–321

    Article  PubMed  Google Scholar 

  • Stein RB, Kearney RE (1995) Nonlinear behavior of muscle reflexes at the human ankle joint. J Neurophysiol 73(1):65–72

    CAS  PubMed  Google Scholar 

  • van der Helm FCT, Schouten AC, de Vlugt E, Brouwn GG (2002) Identification of intrinsic and reflexive components of human arm dynamics during postural control. J Neurosci Methods 119(1):1–14

    Article  PubMed  Google Scholar 

  • van der Horst MJ (2002) Human head neck response in frontal, lateral and rear end impact loading: modelling and validation. Doctoral Dissertation, Eindhoven University of Technology

  • van Eesbeek S, de Groot JH, van der Helm FCT, de Vlugt E (2010) In vivo estimation of the short-range stiffness of cross-bridges from joint rotation. J Biomech 43(13):2539–2547

    Article  PubMed  Google Scholar 

  • Vardy AN, de Vlugt E, van der Helm FCT (2012) Parameter estimation of the Huxley cross-bridge muscle model in humans. In: 34th annual international conference of the IEEE engineering in medicine and biology society

  • Zahalak GI (1986) A comparison of the mechanical behavior of the cat soleus muscle with a distribution-moment model. J Biomech Eng 108:131–140

    Article  CAS  PubMed  Google Scholar 

  • Zhang LQ, Rymer WZ (1997) Simultaneous and nonlinear identification of mechanical and reflex properties of human elbow joint muscles. IEEE Trans Biomed Eng 44:1192–1209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riender Happee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 12366 kb)

Appendix

Appendix

See Fig. 8.

Fig. 8
figure 8

Model fits for one specific trial in condition PT5 in the frequency domain (upper four graphs) and the time domain (lower two graphs). Two model fits are presented using a criterion in the frequency domain (MFRF) and the time domain (velocity)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Happee, R., de Vlugt, E. & van Vliet, B. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations. Exp Brain Res 233, 39–52 (2015). https://doi.org/10.1007/s00221-014-4083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4083-x

Keywords

Navigation