Skip to main content
Log in

Attentional load interferes with target localization across saccades

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The retinal positions of objects in the world change with each eye movement, but we seem to have little trouble keeping track of spatial information from one fixation to the next. We examined the role of attention in trans-saccadic localization by asking participants to localize targets while performing an attentionally demanding secondary task. In the first experiment, attentional load decreased localization precision for a remembered target, but only when a saccade intervened between target presentation and report. We then repeated the experiment and included a salient landmark that shifted on half the trials. The shifting landmark had a larger effect on localization under high load, indicating that observers rely more on landmarks to make localization judgments under high than under low attentional load. The results suggest that attention facilitates trans-saccadic localization judgments based on spatial updating of gaze-centered coordinates when visual landmarks are not available. The availability of reliable landmarks (present in most natural circumstances) can compensate for the effects of scarce attentional resources on trans-saccadic localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Awh E, Jonides J (2001) Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci 5:119–126

    Article  PubMed  Google Scholar 

  • Awh E, Jonides J, Reuter-Lorenz PA (1998) Rehearsal in spatial working memory. J Exp Psych Hum Percept Perform 24:780–790

    Article  CAS  Google Scholar 

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260

    Article  CAS  PubMed  Google Scholar 

  • Bisley J, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86

    Article  CAS  PubMed  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636

    Article  CAS  PubMed  Google Scholar 

  • Burr DC, Morrone MC (2013) Constructing stable maps of the world. Perception 41:1355–1372

    Article  Google Scholar 

  • Cai RH, Pouget A, Schlag-Rey M, Schlag J (1997) Perceived geometrical relationships affected by eye-movement signals. Nature 386:601–604

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh P, Hunt AR, Afraz A, Rolfs M (2010) Visual stability based on remapping of attention pointers. Trends Cogn Sci 14:147–153

    Article  PubMed Central  PubMed  Google Scholar 

  • Coello Y, Grealy M (1997) Effect of size and frame of visual field on the accuracy of an aiming movement. Perception 26:287–300

    Article  CAS  PubMed  Google Scholar 

  • Conti PD, Beaubaton D (1980) Role of structured visual field and visual reafference in accuracy of pointing movements. Percept Mot Skills 50:239–244

    Article  CAS  PubMed  Google Scholar 

  • Crespi S, Biagi L, d’Avossa G, Burr DC, Tosetti M, Morrone MC (2011) Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention. PLoS ONE 6(7):e21661. doi:10.1371/journal.pone.0021661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10:249–255

    Article  PubMed  Google Scholar 

  • Deubel H (2004) Localization of targets across saccades: role of landmark objects. Vis Cogn 11:173–202

    Article  Google Scholar 

  • Deubel H, Schneider WX, Bridgeman B (1996) Postsaccadic target blanking prevents saccadic suppression of image displacement. Vis Res 36:985–996

    Article  CAS  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

    Article  CAS  PubMed  Google Scholar 

  • Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg ME, Bisley J, Powell KD, Gottlieb J, Kusonoki M (2002) The role of the lateral intraparietal area of the monkey in the generation of visual saccades and visuospatial attention. Ann N Y Acad Sci 956:205–215

    Article  PubMed  Google Scholar 

  • Golomb JD, Kanwisher N (2012a) Higher level visual cortex represents retinotopic, not spatiotopic, object location. Cereb Cortex 22:2794–2810

    Article  PubMed Central  PubMed  Google Scholar 

  • Golomb JD, Kanwisher N (2012b) Retinotopic memory is more precise than spatiotopic memory. Proc Natl Acad Sci 109:1796–1801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golomb JD, Chun MM, Mazer JA (2008) The native coordinate system of spatial attention is retinotopic. J Neurosci 28(42):10654–10662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gottlieb J, Kusonoki M, Goldberg M (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795

    Article  CAS  PubMed  Google Scholar 

  • Hunt AR, Cavanagh P (2009) The perceived direction of gaze shifts before the eyes move. J Vis 9:1–7

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunt AR, Cavanagh P (2011) Remapped visual masking. J Vis 11:1–8

    Article  Google Scholar 

  • Irwin DE, Yantis S, Jonides J (1983) Evidence against visual integration across saccadic eye movements. Percept Psychophys 34:49–57

    Article  CAS  PubMed  Google Scholar 

  • Jonikaitis D, Szinte M, Rolfs M, Cavanagh P (2013) Allocation of attention across saccades. J Neurophysiol 109:1425–1434

    Article  PubMed  Google Scholar 

  • Knapen T, Rolfs M, Cavanagh P (2009) The reference frame of the motion aftereffect is retinotopic. J Vis 9:1–6

    Google Scholar 

  • Krigolson O, Heath M (2004) Background visual cues and memory-guided reaching. Hum Mov Sci 23:861–877

    Article  PubMed  Google Scholar 

  • Krigolson O, Clark N, Heath M, Binsted G (2007) The proximity of visual landmarks impacts reaching performance. Spat Vis 20:317–336

    Article  PubMed  Google Scholar 

  • Lemay M, Bertram BM, Stelmach GE (2004) Pointing to an allocentric and egocentric remembered target. Mot Control 8:16–32

    Google Scholar 

  • Mathôt S, Theeuwes J (2011) Visual attention and stability. Philos Trans R Soc Lond B Biol Sci 366:516–527

    Article  PubMed Central  PubMed  Google Scholar 

  • McKyton A, Zohary E (2007) Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. Cereb Cortex 17:1164–1172

    Article  PubMed  Google Scholar 

  • McKyton A, Pertzov Y, Zohary E (2009) Pattern matching is assessed in retinotopic coordinates. J Vis 9:1–10

    Article  PubMed  Google Scholar 

  • Melcher DE (2005) Accumulation and persistence of memory for natural scenes. J Vis 6:8–17

    Google Scholar 

  • Melcher DE, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12:466–476

    Article  PubMed  Google Scholar 

  • Melcher D, Morrone MC (2003) Spatiotopic temporal integration of visual motion across saccadic eye movements. Nat Neurosci 6:877–881

    Article  CAS  PubMed  Google Scholar 

  • Pearson D, Sahraie A (2003) Oculomotor control and the maintenance of spatially and temporally distributed events in visuo-spatial working memory. Q J Exp Psychol 56:1089–1111

    Article  Google Scholar 

  • Radvansky GA, Carlson-Radvansky LA, Irwin DE (1995) Uncertainty in estimating distances from memory. Mem Cognit 23:596–606

    Article  CAS  PubMed  Google Scholar 

  • Rolfs M, Jonikaitis D, Deubel H, Cavanagh P (2011) Predictive remapping of attention across eye movements. Nat Neurosci 14:252–256

    Article  CAS  PubMed  Google Scholar 

  • Schütz I, Henriques DYP, Fiehler K (2013) Gaze-centered spatial updating in delayed reaching even in the presence of landmarks. Vis Res 87:46–52

    Article  PubMed  Google Scholar 

  • Sheth BR, Shimojo S (2004) Extrinsic cues suppress the encoding of intrinsic cues. J Cogn Neurosci 16:339–350

    Article  PubMed  Google Scholar 

  • Wenderoth P, Wiese M (2008) Retinotopic encoding of the direction aftereffect. Vis Res 48:1949–1954

    Article  PubMed  Google Scholar 

  • Wurtz RH (2008) Neuronal mechanisms of visual stability. Vis Res 48:2070–2089

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the BBSRC (BB/H01280X/1) and the James S McDonnell Foundation (both to A.R.H). The authors would like to thank Kelly Norman for assistance with data collection, and the members of the Perception and Attention theme at the University of Aberdeen for feedback and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia R. Hunt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacInnes, W.J., Hunt, A.R. Attentional load interferes with target localization across saccades. Exp Brain Res 232, 3737–3748 (2014). https://doi.org/10.1007/s00221-014-4062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4062-2

Keywords

Navigation