Skip to main content

Advertisement

Log in

Jaw-opening accuracy is not affected by masseter muscle vibration in healthy men

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There is a functional integration between the jaw and neck regions with head extension–flexion movements during jaw-opening/closing tasks. We recently reported that trigeminal nociceptive input by injection of hypertonic saline into the masseter muscle altered this integrated jaw–neck function during jaw-opening/closing tasks. Thus, in jaw-opening to a predefined position, the head–neck component increased during pain. Previous studies have indicated that muscle spindle stimulation by vibration of the masseter muscle may influence jaw movement amplitudes, but the possible effect on the integrated jaw–neck function is unknown. The aim of this study was to investigate the effect of masseter muscle vibration on jaw–head movements during a continuous jaw-opening/closing task to a target position. Sixteen healthy men performed two trials without vibration (Control) and two trials with bilateral masseter muscle vibration (Vibration). Movements of the mandible and the head were registered with a wireless three-dimensional optoelectronic recording system. Differences in jaw-opening and head movement amplitudes between Control and Vibration, as well as achievement of the predefined jaw-opening target position, were analysed with Wilcoxon’s matched pairs test. No significant group effects from vibration were found for jaw or head movement amplitudes, or in the achievement of the target jaw-opening position. A covariation between the jaw and head movement amplitudes was observed. The results imply a high stability for the jaw motor system in a target jaw-opening task and that this task was achieved with the head–neck and jaw working as an integrated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bock O (2013) Basic principles of sensorimotor adaptation to different distortions with different effectors and movement types: a review and synthesis of behavioral findings. Front Hum Neurosci 7:81. doi:10.3389/fnhum.2013.00081

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Learning optimal adaptation strategies in unpredictable motor tasks. J Neurosci 29:6472–6478. doi:10.1523/JNEUROSCI.3075-08.2009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cordo P, Carlton L, Bevan L, Carlton M, Kerr GK (1994) Proprioceptive coordination of movement sequences: role of velocity and position information. J Neurophysiol 71:1848–1861

    PubMed  CAS  Google Scholar 

  • Cordo P, Gurfinkel VS, Bevan L, Kerr GK (1995) Proprioceptive consequences of tendon vibration during movement. J Neurophysiol 74:1675–1688

    PubMed  CAS  Google Scholar 

  • Dworkin SF, LeResche L (1992) Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniomandib Disord 6:301–355

    PubMed  CAS  Google Scholar 

  • Eriksson PO, Thornell LE (1987) Relation to extrafusal fibre-type composition in muscle-spindle structure and location in the human masseter muscle. Arch Oral Biol 32:483–491

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PO, Butler-Browne GS, Thornell LE (1994) Immunohistochemical characterization of human masseter muscle spindles. Muscle Nerve 17:31–41. doi:10.1002/mus.880170105

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PO, Häggman-Henrikson B, Nordh E, Zafar H (2000) Co-ordinated mandibular and head-neck movements during rhythmic jaw activities in man. J Dent Res 79:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972) The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–748

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth KE, Hellsing G, Lofstedt L (1976) TVR and vibration-induced timing of motor impulses in the human jaw elevator muscles. J Neurol Neurosurg Psychiatry 39:719–728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Häggman-Henrikson B, Eriksson PO (2004) Head movements during chewing: relation to size and texture of bolus. J Dent Res 83:864–868

    Article  PubMed  Google Scholar 

  • Häggman-Henrikson B, Eriksson PO, Nordh E, Zafar H (1998) Evaluation of skin- versus teeth-attached markers in wireless optoelectronic recordings of chewing movements in man. J Oral Rehabil 25:527–534

    Article  PubMed  Google Scholar 

  • Häggman-Henrikson B, Zafar H, Eriksson PO (2002) Disturbed jaw behavior in whiplash-associated disorders during rhythmic jaw movements. J Dent Res 81:747–751

    Article  PubMed  Google Scholar 

  • Häggman-Henrikson B, Nordh E, Eriksson PO (2013) Increased sternocleidomastoid, but not trapezius, muscle activity in response to increased chewing load. Eur J Oral Sci 121:443–449. doi:10.1111/eos.12066

    Article  PubMed  Google Scholar 

  • Hellsing G (1978) Distortion of mandibular kinesthesia induced by vibration of human jaw muscles. Scand J Dent Res 86:486–494

    PubMed  CAS  Google Scholar 

  • Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166

    PubMed  CAS  Google Scholar 

  • Inglis JT, Frank JS (1990) The effect of agonist/antagonist muscle vibration on human position sense. Exp Brain Res 81:573–580

    Article  PubMed  CAS  Google Scholar 

  • Josefsson T, Nordh E, Eriksson PO (1996) A flexible high-precision video system for digital recording of motor acts through lightweight reflex markers. Comput Methods Programs Biomed 49:119–129. doi:10.1016/0169-2607(96)01715-4

    Article  PubMed  CAS  Google Scholar 

  • Lazarov NE (2007) Neurobiology of orofacial proprioception. Brain Res Rev 56:362–383. doi:10.1016/j.brainresrev.2007.08.009

    Article  PubMed  Google Scholar 

  • Lennartsson B (1979) Muscle spindles in the human anterior digastric muscle. Acta Odontol Scand 37:329–333

    Article  PubMed  CAS  Google Scholar 

  • Loucks TM, De Nil LF (2001) The effects of masseter tendon vibration on nonspeech oral movements and vowel gestures. J Speech Lang Hear Res 44:306–316

    Article  PubMed  CAS  Google Scholar 

  • Loucks TM, De Nil LF (2006) Anomalous sensorimotor integration in adults who stutter: a tendon vibration study. Neurosci Lett 402:195–200

    Article  PubMed  CAS  Google Scholar 

  • Loucks TM, De Nil LF (2012) Oral sensorimotor integration in adults who stutter. Folia Phoniatr Logopaedica 64:116–121. doi:10.1159/000338248

    Article  Google Scholar 

  • Luo PF, Li JS (1991) Monosynaptic connections between neurons of trigeminal mesencephalic nucleus and jaw-closing motoneurons in the rat: an intracellular horseradish peroxidase labelling study. Brain Res 559:267–275

    Article  PubMed  CAS  Google Scholar 

  • Park S, Toole T, Lee S (1999) Functional roles of the proprioceptive system in the control of goal-directed movement. Percept Mot Skills 88:631–647

  • Ribot-Ciscar E, Rossi-Durand C, Roll JP (1998) Muscle spindle activity following muscle tendon vibration in man. Neurosci Lett 258:147–150

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Gilhodes JC (1995) Proprioceptive sensory codes mediating movement trajectory perception: human hand vibration-induced drawing illusions. Can J Physiol Pharmacol 73:295–304

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47:177–190

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222

    Article  PubMed  CAS  Google Scholar 

  • Scutter SD, Turker KS (2001) The role of the muscle spindles in human masseter. Hum Mov Sci 20:489–497. doi:10.1016/S0167-9457(01)00064-1

    Article  PubMed  CAS  Google Scholar 

  • Seizova-Cajic T, Azzi R (2011) Conflict with vision diminishes proprioceptive adaptation to muscle vibration. Exp Brain Res 211:169–175. doi:10.1007/s00221-011-2663-6

    Article  PubMed  Google Scholar 

  • Sittig AC, Denier van der Gon JJ, Gielen CC (1985) Separate control of arm position and velocity demonstrated by vibration of muscle tendon in man. Exp Brain Res 60:445–453

  • Verschueren SM, Cordo PJ, Swinnen SP (1998) Representation of wrist joint kinematics by the ensemble of muscle spindles from synergistic muscles. J Neurophysiol 79:2265–2276

    PubMed  CAS  Google Scholar 

  • Verschueren SM, Swinnen SP, Cordo PJ, Dounskaia NV (1999a) Proprioceptive control of multijoint movement: bimanual circle drawing. Exp Brain Res 127:182–192

    Article  PubMed  CAS  Google Scholar 

  • Verschueren SM, Swinnen SP, Cordo PJ, Dounskaia NV (1999b) Proprioceptive control of multijoint movement: unimanual circle drawing. Exp Brain Res 127:171–181

    Article  PubMed  CAS  Google Scholar 

  • Wiesinger B, Häggman-Henrikson B, Hellström F, Wänman A (2013) Experimental masseter muscle pain alters jaw-neck motor strategy. Eur J Pain 17:995–1004. doi:10.1002/j.1532-2149.2012.00263.x

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM (1997) Computational approaches to motor control. Trends Cogn Sci 1:209–216. doi:10.1016/S1364-6613(97)01070-X

    Article  PubMed  CAS  Google Scholar 

  • Zafar H, Eriksson PO, Nordh E, Häggman-Henrikson B (2000) Wireless optoelectronic recordings of mandibular and associated head-neck movements in man: a methodological study. J Oral Rehabil 27:227–238

    Article  PubMed  CAS  Google Scholar 

  • Zafar H, Nordh E, Eriksson PO (2006) Impaired positioning of the gape in whiplash-associated disorders. Swed Dent J 30:9–15

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Erling Englund for statistical advice. This study was supported by grants from the Department of Research and Development, Västernorrland County Council; Visare Norr, Northern County Councils; the Swedish Dental Society, and the Sigurd and Elsa Golje Memorial Foundation.

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wiesinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiesinger, B., Häggman-Henrikson, B., Wänman, A. et al. Jaw-opening accuracy is not affected by masseter muscle vibration in healthy men. Exp Brain Res 232, 3501–3508 (2014). https://doi.org/10.1007/s00221-014-4037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4037-3

Keywords

Navigation