Skip to main content
Log in

Effects of five years of chronic STN stimulation on muscle strength and movement speed

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study examined the long-term effects of chronic subthalamic nucleus (STN) deep brain stimulation (DBS) using both clinical evaluation and laboratory motor control measures. Over a 5-year time period, changes in the motor section of the Unified Parkinson’s Disease Rating Scale (UPDRS) and movement speed and strength at the ankle joint were evaluated on and off STN DBS in eight patients with Parkinson’s disease (PD). Four patients were also studied at the elbow joint. Patients with PD originally received unilateral STN DBS between years 2001 and 2003. They were re-evaluated after 5 years of long-term STN DBS between years 2006–2008. At baseline (year 0) and after 5 years, patients with PD were tested off treatment and on STN DBS. In each testing condition, patients performed ballistic, single degree of freedom ankle dorsiflexion and ankle plantarflexion movements and peak velocity was calculated. Patients also performed maximal voluntary contractions at the ankle joint in both directions, and peak torque was calculated. Results showed increased motor UPDRS scores from year 0 to year 5, but STN DBS was efficacious in reducing them. In contrast to the increase in motor UPDRS scores, motor control results showed a marked improvement in peak velocity and peak torque over the 5-year time period in the off treatment condition, and STN DBS was efficacious by improving both peak velocity and peak torque. The current findings suggest that 5 years of chronic STN DBS can have beneficial effects on the motor system over the long term in discrete motor tasks in which maximal effort and maximal neural output is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastian AJ, Kelly VE et al (2003) Different effects of unilateral versus bilateral subthalamic nucleus stimulation on walking and reaching in Parkinson’s disease. Mov Disord 18(9):1000–1007

    Article  PubMed  Google Scholar 

  • Boecker H, Dagher A et al (1998) Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. J Neurophysiol 79(2):1070–1080

    CAS  PubMed  Google Scholar 

  • Brown RG, Dowsey PL et al (1999) Impact of deep brain stimulation on upper limb akinesia in Parkinson’s disease. Ann Neurol 45(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Corcos DM, Chen CM et al (1996) Strength in Parkinson’s disease: relationship to rate of force generation and clinical status. Ann Neurol 39(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345(13):956–963

    Article  Google Scholar 

  • Diamond A, Jankovic J (2005) The effect of deep brain stimulation on quality of life in movement disorders. J Neurol Neurosurg Psychiatry 76(9):1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Dibble LE, Hale TF et al (2006) High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson’s disease. Mov Disord 21(9):1444–1452

    Article  PubMed  Google Scholar 

  • Dibble LE, Hale TF et al (2009) High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson’s disease: a preliminary study. Parkinsonism Relat Disord 15(10):752–757

    Article  PubMed  Google Scholar 

  • Faist M, Xie J et al (2001) Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain 124(Pt 8):1590–1600

    Article  CAS  PubMed  Google Scholar 

  • Fraix V, Pollak P et al (2008) Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease. Clin Neurophysiol 119(11):2513–2518

    Article  PubMed  Google Scholar 

  • Garcia L, D’Alessandro G, Bioulac B, Hammond C (2005) High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci 28(4):209–216

    Google Scholar 

  • Hughes AJ, Ben-Shlomo Y et al (1992a) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 42(6):1142–1146

    CAS  PubMed  Google Scholar 

  • Hughes AJ, Daniel SE et al (1992b) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  CAS  PubMed  Google Scholar 

  • Krack P, Batir A et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Fogel W et al (2004) Chronic inhibition of the subthalamic nucleus in Parkinson’s disease. J Neurol Sci 219(1–2):119–124

    Article  CAS  PubMed  Google Scholar 

  • Lagrange E, Krack P et al (2002) Bilateral subthalamic nucleus stimulation improves health-related quality of life in PD. Neurology 59(12):1976–1978

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Widner H et al (1992) Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 7(1):2–13

    Article  CAS  PubMed  Google Scholar 

  • Lezcano E, Gomez-Esteban JC et al (2004) Improvement in quality of life in patients with advanced Parkinson’s disease following bilateral deep-brain stimulation in subthalamic nucleus. Eur J Neurol 11(7):451–454

    Article  CAS  PubMed  Google Scholar 

  • Maetzler W, Liepelt I et al (2009) Progression of Parkinson’s disease in the clinical phase: potential markers. Lancet Neurol 8(12):1158–1171

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD (1989) Slowness of movement in Parkinson’s disease. Mov Disord 4(Suppl 1):S26-S37

    Google Scholar 

  • Maurer C, Mergner T et al (2003) Effect of chronic bilateral subthalamic nucleus (STN) stimulation on postural control in Parkinson’s disease. Brain 126(Pt 5):1146–1163

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni P, Hristova A et al (2007) Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci 27(27):7105–7116

    Article  CAS  PubMed  Google Scholar 

  • Meissner W, Harnack D et al (2003) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85(3):601–609

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Glover GH et al (1998) Differential activation of dorsal basal ganglia during externally and self paced sequences of arm movements. Neuroreport 9(7):1567–1573

    Article  CAS  PubMed  Google Scholar 

  • Mink JW, Thach WT (1991) Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 65(2):301–329

    CAS  PubMed  Google Scholar 

  • Molnar GF, Sailer A et al (2005) Changes in cortical excitability with thalamic deep brain stimulation. Neurology 64(11):1913–1919

    Article  CAS  PubMed  Google Scholar 

  • Molnar GF, Sailer A et al (2006) Changes in motor cortex excitability with stimulation of anterior thalamus in epilepsy. Neurology 66(4):566–571

    Article  CAS  PubMed  Google Scholar 

  • Niv Y, Joel D et al (2006) A normative perspective on motivation. Trends Cogn Sci 10(8):375–381

    Article  PubMed  Google Scholar 

  • Ostergaard K, Aa Sunde N (2006) Evolution of Parkinson’s disease during 4 years of bilateral deep brain stimulation of the subthalamic nucleus. Mov Disord 21(5):624–631

    Article  PubMed  Google Scholar 

  • Pessiglione M, Schmidt L et al (2007) How the brain translates money into force: a neuroimaging study of subliminal motivation. Science 316(5826):904–906

    Article  CAS  PubMed  Google Scholar 

  • Prodoehl J, Corcos DM et al (2009) Basal ganglia mechanisms underlying precision grip force control. Neurosci Biobehav Rev 33(6):900–908

    Article  PubMed  Google Scholar 

  • Rocchi L, Chiari L et al (2004) Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson’s disease. Gait Posture 19(2):172–183

    Article  PubMed  Google Scholar 

  • Rodriguez-Oroz MC, Obeso JA et al (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(Pt 10):2240–2249

    Article  CAS  PubMed  Google Scholar 

  • Schmidt L, Clery-Melin ML et al (2009) Get aroused and be stronger: emotional facilitation of physical effort in the human brain. J Neurosci 29(30):9450–9457

    Article  CAS  PubMed  Google Scholar 

  • Shapiro MB, Vaillancourt DE et al (2007) Effects of STN DBS on rigidity in Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng 15(2):173–181

    Article  PubMed  Google Scholar 

  • Spraker MB, Prodoehl J et al. (2010). Basal ganglia hypoactivity during grip force in drug naive Parkinson’s disease. Hum Brain Mapp [Epub ahead of print]

  • Spraker MB, Yu H et al (2007) Role of individual basal ganglia nuclei in force amplitude generation. J Neurophysiol 98(2):821–834

    Article  PubMed  Google Scholar 

  • Starr PA, Vitek JL et al (1998) Deep brain stimulation for movement disorders. Neurosurg Clin N Am 9(2):381–402

    CAS  PubMed  Google Scholar 

  • Sturman MM, Vaillancourt DE et al (2004) Effects of subthalamic nucleus stimulation and medication on resting and postural tremor in Parkinson’s disease. Brain 127(Pt 9):2131–2143

    Article  PubMed  Google Scholar 

  • Sturman MM, Vaillancourt DE et al (2008) Effect of short and long term STN stimulation periods on parkinsonian signs. Mov Disord 23(6):866–874

    Article  PubMed  Google Scholar 

  • Tisch S, Rothwell JC, Bhatia KP, Quinn N, Zrinzo L, Jahanshahi M, Ashkan K, Hariz M, Limousin P (2007a) Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. Exp Neurol 206(1):80–85

    Article  PubMed  Google Scholar 

  • Tisch S, Rothwell JC, Limousin P, Hariz MI, Corcos DM (2007b) The physiological effects of pallidal deep brain stimulation in dystonia. IEEE Trans Neural Syst Rehabil Eng 15(2):166–172

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Prodoehl J et al (2004a) Effects of deep brain stimulation and medication on bradykinesia and muscle activation in Parkinson’s disease. Brain 127(Pt 3):491–504

    PubMed  Google Scholar 

  • Vaillancourt DE, Mayka MA et al (2004b) Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage 23(1):175–186

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Prodoehl J et al (2006) Effects of deep brain stimulation and medication on strength, bradykinesia, and electromyographic patterns of the ankle joint in Parkinson’s disease. Mov Disord 21(1):50–58

    Article  PubMed  Google Scholar 

  • Wider C, Pollo C et al (2008) Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism Relat Disord 14(2):114–119

    Article  CAS  PubMed  Google Scholar 

  • Wilmore JH (1968) Influence of motivation on physical work capacity and performance. J Appl Physiol 24(4):459–463

    CAS  PubMed  Google Scholar 

  • Zhao XD, Cao YQ et al (2009) Long term high frequency stimulation of STN increases dopamine in the corpus striatum of hemiparkinsonian rhesus monkey. Brain Res 1286:230–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the comments on an earlier version of the manuscript of Dr. Greg Molnar of Medtronic. This research was supported in part by grants from the National Institutes of Health (R01-NS-52318, R01-NS-58487, R01-NS-40902, R01-NS-28127). Additional research support was provided through a Parkinson Research Center grant from the Parkinson's Disease Foundation.

Conflict of interest

None reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly M. Sturman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturman, M.M., Vaillancourt, D.E., Verhagen Metman, L. et al. Effects of five years of chronic STN stimulation on muscle strength and movement speed. Exp Brain Res 205, 435–443 (2010). https://doi.org/10.1007/s00221-010-2370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2370-8

Keywords

Navigation