Skip to main content
Log in

Active attention modulates passive attention-related neural responses to sudden somatosensory input against a silent background

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To reveal whether active attention modulates neuronal responses related to passive attention to somatosensory stimuli presented suddenly against a silent background, we examined the passive attention-related change in amplitude of the event-related brain potentials (ERPs), caused by temporal infrequency of stimuli. Eighteen healthy subjects performed passive and active attention tasks in two stimulus conditions. In the oddball condition, frequent (80%, standard) and infrequent (20%, deviant) electrical stimuli were randomly delivered to the second and third digits of the left hand. In the deviant-alone condition, the deviant stimulus (deviant-alone stimulus) was delivered with the same timing and sequence as in the oddball condition without standard stimuli. The P100, N140, and P200 elicited by the deviant-alone stimulus were enhanced in amplitude compared to those evoked by the oddball deviant stimulus in both the active and passive tasks. Moreover, active attention increased the enhancement of P100 and N140. The difference waveform (deviant-alone minus oddball deviant) provided similar findings. In conclusion, active attention enhances neural responses related to passive shifts of attention to somatosensory signals suddenly presented against a silent background. The results indicate that top-down signals for detecting target stimuli interact with passive shifts of attention caused by bottom-up signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akatsuka K, Wasaka T, Nakata H, Inui H, Hoshiyama M, Kakigi R (2005) Mismatch responses related to temporal discrimination of somatosensory stimulation. Clin Neurophysiol 116:1930–1937

    Article  PubMed  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic area generating long-latency activity. J Neurophysiol 62:711–722

    PubMed  CAS  Google Scholar 

  • Allison T, McCarthy G, Wood CC (1992) The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroencephalogr Clin Neurophysiol 84:301–384

    Article  PubMed  CAS  Google Scholar 

  • Barba C, Frot M, Guenot M, Mauguiere F (2001) Stereotactic recordings of median nerve somatosensory-evoked potentials in the human pre-supplementary motor area. Eur J Neurosci 13:347–356

    Article  PubMed  CAS  Google Scholar 

  • Barba C, Valeriani M, Restuccia D, Colicchio G, Faraca G, Tonali L, Mauguiere F (2003) The human supplementary motor area-proper does not receive direct somatosensor inputs from the periphery; data from stereotactic depth somatosensory evoked potential recordings. Neurosci Lett 344:161–164

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Henik A (2000) The endogenous modulation of IOR is nasal-temporal asymmetric. J Cogn Neurosci 12:421–428

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Robertson D (1977) Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol (Lond) 271:761–782

    CAS  Google Scholar 

  • Desmedt JE, Tomberg C (1989) Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P100 and N140. Electroencephalogr Clin Neurophysiol 74:321–346

    Article  PubMed  CAS  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 100:357–374

    Article  Google Scholar 

  • Eimer M, Driver J (2000) An event-related brain potential study of cross-modal links in spatial selective attention between vision and touch. Psychophysiology 37:697–705

    Article  PubMed  CAS  Google Scholar 

  • Eimer M, Forster B (2003) The spatial distribution of attentional selectivity in touch: evidence from somatosensory ERP components. Clin Neurophysiol 114:1298–1306

    Article  PubMed  Google Scholar 

  • Eimer M, Cockburn D, Smedley B, Driver J (2001) Cross-modal links in endogenous spatial attention are mediated by common external locations: evidence from event-related brain potentials. Exp Brain Res 139:398–411

    Article  PubMed  CAS  Google Scholar 

  • Eimer M, van Velzen J, Driver J (2002) Crossmodal interactions between audition, touch and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations. J Cogn Neurosci 14:254–271

    Article  PubMed  Google Scholar 

  • Folk CL, Remmington RW, Johnston JC (1992) Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform 18:1030–1044

    Article  PubMed  CAS  Google Scholar 

  • Friesen CK, Ristic J, Kingstone A (2004) Attentional effects of counterpredictive gaze and arrow cues. J Exp Psychol Hum Percept Perform 30:319–329

    Article  PubMed  Google Scholar 

  • Frot M, Mauguière F (1999) Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Cereb Cortex 9:854–863

    Article  PubMed  CAS  Google Scholar 

  • Frot M, Garcìa-Larrea L, Marc G, Mauguière F (2001) Responses of the supra-sylvian (SII) cortex in humans to painful and innocuous stimuli. A study using intra-cerebral recordings. Pain 94:65–73

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara N, Imai M, Nagamine T, Mima T, Oga T, Takeshita K, Shibasaki H (2002) Second somatosensory area (SII) plays a significant role in selective somatosensory attention. Brain Res Cogn Brain Res 14:389–397

    Article  PubMed  Google Scholar 

  • García-Larrea L, Lukaszewicz A-C, Mauguiere F (1995) Somatosensory responses during selective spatial attention: the N120–N140 transition. Psychophysiology 32:526–537

    PubMed  Google Scholar 

  • Hamada Y, Okita H, Suzuki R (2003) Effect of interstimulus interval on attentional modulation of cortical activities in human somatosensory areas. Clin Neurophysiol 114:548–555

    Article  PubMed  Google Scholar 

  • Han SH, Wan XA, Humphreys GW (2005) Shifts of spatial attention in perceived 3-D space. Q J Exp Psychol A Human Exp Psychol 58:753–764

    Google Scholar 

  • Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Phil Trans R Soc Lond B 354:1145–1154

    Article  CAS  Google Scholar 

  • Hillyard SA, Mangun GR (1987) Sensory gating as a physiological mechanism for visual selective attention. Electroencephalogr Clin Neurophysiol Suppl 40:61–67

    PubMed  CAS  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain, Science 182:177–180

    Article  PubMed  CAS  Google Scholar 

  • Hillyard SA, Teder-Salejarvi WA, Munte TF (1998) Temporal dynamics of early perceptual processing. Curr Opin Neurobiol 8:202–210

    Article  PubMed  CAS  Google Scholar 

  • Hopfinger JB, West VM (2006) Interactions between endogenous and exogenous attention on cortical visual processing. Neuroimage (in press)

  • Inui K, Tran TD, Qiu Y, Wang X, Hoshiyama M, Kakigi R (2003) A comparative magnetoencephalographic study of cortical activations evoked by noxious and innocuous somatosensory stimulations. Neuroscience 120:235–248

    Article  PubMed  CAS  Google Scholar 

  • Jonides J (1981) Voluntary versus automatic control over the mind’s eye movement. In: Long JB, Baddeley AD (eds) Attention and performance, vol IX. Erlbaum, Hillsdale, pp 187–203

  • Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61:495–523

    Article  PubMed  CAS  Google Scholar 

  • Kekoni J, Hamalainen H, McCloud V, Reinikainen K, Naatanen R (1996) Is the somatosensory N250 related to deviance discrimination or conscious target detection? Electroencephalogr Clin Neurophysiol 100:115–125

    Article  PubMed  CAS  Google Scholar 

  • Kekoni J, Hamalainen H, Saarinen M, Grohn J, Reinikainen K, Lehtokoski A, Naatanen R (1997) Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biol Psychol 46:125–142

    Article  PubMed  CAS  Google Scholar 

  • Kida T, Nishihira Y, Hatta A, Wasaka T (2003a) Somatosensory N250 and P300 during discrimination task. Int J Psychophysiol 48:275–283

    Article  Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Nakajima T, Sakamoto M (2003b) Changes in the somatosensory N250 and P300 by the variation of reaction time. Eur J Appl Physiol 89:326–330

    Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004a) Differential modulation of temporal and frontal components of the somatosensory N140 and the effect of interstimulus interval in a selective attention task. Brain Res Cogn Brain Res 19:33–39

    Article  Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004b) Passive enhancement of the somatosensory P100 and N140 in an active attention task using deviant alone condition. Clin Neurophysiol 115:871–879

    Article  Google Scholar 

  • Kida T, Nishihira Y, Hatta A, Wasaka T, Tazoe T, Sakajiri Y, Nakata H, Kaneda T, Kuroiwa K, Akiyama S, Sakamoto M, Kamijo K, Higashiura T (2004c) Resource allocation and somatosensory P300: effects of tracking speed and predictability of tracking direction. Clin Neurophysiol 115:2616–2628

    Article  Google Scholar 

  • Knight RT (1984) Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol 59:9–20

    Article  PubMed  CAS  Google Scholar 

  • Knight RT (1985) Electrophysiology in behavioral neurology. In: Mesulam M-M (ed) Principles of behavioral neurology. Davis, Philadelphia, pp 327–346

    Google Scholar 

  • Lam K, Kakigi R, Mukai T, Yamasaki H (2000) Attention and visual interference stimulation affect somatosensory processing: a magnetoencephalographic study. Neuroscience 104:689–703

    Article  Google Scholar 

  • Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicates changes in perceptual processing during visual–spatial priming. J Exp Psychol Hum Percept Perform 17:1057–1074

    Article  PubMed  CAS  Google Scholar 

  • Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R (1997a) Activation of a distributed somatosensory cortical network in the human brain. A dipole modeling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104:281–289

    Article  Google Scholar 

  • Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R (1997b) Activation of a distributed somatosensory cortical network in the human brain. A dipole modeling study of magnetic fields evoked by median nerve stimulation. Part II: effects of stimulus rate, attention, and stimulus detection. Electroencephalogr Clin Neurophysiol 104:290–295

    Article  Google Scholar 

  • Michie PT, Bearpark HM, Crawford JM, Glue LCT (1987) The effects of spatial selective attention on the somatosensory event-related potential. Psychophysiology 24:449–463

    PubMed  CAS  Google Scholar 

  • Mima T, Nagamine T, Nakamura K, Shibasaki H (1998) Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 20:2215–2221

    Google Scholar 

  • Näätänen R (1986) The orienting response theory: an integration of informational and energetical aspects of brain function. In: Hockey RGJ, Gaillard AWK, Coles M (eds) Adaptation to stress and task demands: energetical aspects of human information processing. Dortrecht, Martinus, Nijhoff, pp 99–111

  • Näätänen R (1987) Event-related potentials in research of cognitive process—a classification of components. In: Meer E, Hoffman J (eds) Knowledge aided information processing. Elsevier, Amsterdam, pp 241–273

    Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mantysalo S (1978) Early selective attention effect on evoked potentials reinterpreted. Acta Psychol (Amst) 42:313–329

    Article  Google Scholar 

  • Shinozaki N, Yabe H, Sutoh T, Hiruma T, Kaneko S (1998) Somatosensory automatic responses to deviant stimuli. Brain Res Cogn Brain Res 7:165–171

    Article  PubMed  CAS  Google Scholar 

  • Spence C, Driver J (1997) Audiovisual links in exogenous covert spatial orienting. Percept Psychophys 59:1–22

    PubMed  CAS  Google Scholar 

  • Spence C, Nicholls MER, Gillespie N, Driver J (1998) Crossmodal links in exogenous covert spatial orienting between touch, audition, and vision. Percept Psychophys 60:544–557

    PubMed  CAS  Google Scholar 

  • Tamura Y, Hoshiyama M, Inui K, Nakata H, Wasaka T, Tran TD, Kakigi R (2004) Cognitive processes in two-point discrimination: an ERP study. Clin Neurophysiol 115:1875–1884

    Article  PubMed  Google Scholar 

  • Tomberg C, Desmedt JE, Ozaki I, Nguyen TH, Chalklin V (1989) Mapping somatosensory evoked potentials to finger stimulation at intervals of 450 to 4000 msec and the issue of habituation when assessing early cognitive components. Electroencephalogr Clin Neurophysiol 74:347–358

    Article  PubMed  CAS  Google Scholar 

  • Valeriani M, Ranghi F, Giaquinto S (2003) The effects of aging on selective attention to touch: a reduced inhibitory control in elderly subjects? Int J Psychophysiol 49:75–87

    Article  PubMed  Google Scholar 

  • Waberski TD, Gobbele R, Darvas F, Schmitz S, Buchner H (2002) Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation. Neuroimage 17:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Winkler I, Paavilainen P, Näätänen R (1992) Can echoic memory store two traces simultaneously? A study of event-related brain potentials. Psychophysiology 29:337–349

    PubMed  CAS  Google Scholar 

  • Woldroff MG, Hillyard SA, Gallen C (1991) Magnetoencephalographic recordings demonstrate attentional modulation of mismatch-related neural activity in human auditory cortex. Psychophysiology 35:283–292

    Article  Google Scholar 

  • Woldorff MG, Hackley SA, Hillyard SA (1998) The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tone. 28:30–42

  • Yabe H, Winker I, Czigler I, Koyama S, Kakigi S, Sutoh T, Hiruma T, Kakeko Y (2001) Organizing sound sequences in the human brain: the interplay of auditory and streaming and temporal integration. Brain Res 897:222–227

    Article  PubMed  Google Scholar 

  • Yamaguchi S, Knight RT (1991) P300 generation by novel somatosensory stimuli. Electroencephalogr Clin Neurophysiol 78:50–55

    Article  PubMed  CAS  Google Scholar 

  • Yantis S, Jonides J (1990) Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform 16:121–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thanks Mr. O. Nagata and Mr. Y. Takeshima for their help in devising, constructing, and maintaining the equipment in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Kida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kida, T., Wasaka, T., Nakata, H. et al. Active attention modulates passive attention-related neural responses to sudden somatosensory input against a silent background. Exp Brain Res 175, 609–617 (2006). https://doi.org/10.1007/s00221-006-0578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0578-4

Keywords

Navigation