Skip to main content
Log in

Small Data Solutions for the Vlasov–Poisson System with a Repulsive Potential

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study small data solutions for the Vlasov–Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov–Poisson system with the repulsive potential \(\frac{-|x|^2}{2}\) in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We stress the trapped set in the exterior of black hole backgrounds is eventually absolutely r-normally hyperbolic for every r according to [HPS77, Chapter 1, Definition 4].

  2. We refer to a distribution in phase space \({{\mathbb {R}}}^n_x\times {{\mathbb {R}}}^n_v\) as a map \((x,v)\mapsto \Delta _{(x,v)}\subseteq T_{(x,v)}({{\mathbb {R}}}^n_x\times {{\mathbb {R}}}^n_v)\), where \(\Delta _{(x,v)}\) are vector subspaces satisfying suitable conditions (in the standard sense used in differential geometry).

  3. In general relativity, many-particle systems can be composed by particles moving at the speed of light for which their mass vanishes. Nonetheless, we only comment on stability results for relativistic collisionless many-particle systems for which the mass of their particles is one.

References

  1. Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson equation in \(3\) space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118 (1985)

    ADS  MathSciNet  Google Scholar 

  2. Batt, J., Faltenbacher, W., Horst, E.: Stationary spherically symmetric models in stellar dynamics. Arch. Ration. Mech. Anal. 93(2), 159–183 (1986)

    MathSciNet  Google Scholar 

  3. Bigorgne, L.: Sharp asymptotic behavior of solutions of the \(3d\) Vlasov–Maxwell system with small data. Commun. Math. Phys. 376(2), 893–992 (2020)

    ADS  MathSciNet  Google Scholar 

  4. Bigorgne, L.: Asymptotic properties of the solutions to the Vlasov–Maxwell system in the exterior of a light cone. Int. Math. Res. Not. IMRN 1(5), 3729–3793 (2021)

    MathSciNet  Google Scholar 

  5. Bigorgne, L.: Asymptotic properties of small data solutions of the Vlasov–Maxwell system in high dimensions. Mém. Soc. Math. Fr. (N.S.) 1(172), vi+123 (2022)

    MathSciNet  Google Scholar 

  6. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton Series in Astrophysics, 2nd edn. Princeton University Press, Princeton (2011)

    Google Scholar 

  7. Carrapatoso, K., Dolbeault, J., Hérau, F., Mischler, S., Mouhot, C., Schmeiser, C.: Special modes and hypocoercivity for linear kinetic equations with several conservation laws and a confining potential. arXiv:2105.04855 (2021)

  8. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    Google Scholar 

  9. Chaturvedi, S., Luk, J.: Phase mixing for solutions to 1D transport equation in a confining potential. Kinet. Relat. Models 15(3), 403–416 (2022)

    MathSciNet  Google Scholar 

  10. Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)

    Google Scholar 

  11. Duan, R., Li, W.: Hypocoercivity for the linear Boltzmann equation with confining forces. J. Stat. Phys. 148(2), 306–324 (2012)

    ADS  MathSciNet  Google Scholar 

  12. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347(9–10), 511–516 (2009)

    MathSciNet  Google Scholar 

  13. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015)

    MathSciNet  Google Scholar 

  14. Duan, R.: Hypocoercivity of linear degenerately dissipative kinetic equations. Nonlinearity 24(8), 2165–2189 (2011)

    ADS  MathSciNet  Google Scholar 

  15. Duan, X.: Sharp decay estimates for the Vlasov–Poisson and Vlasov–Yukawa systems with small data. Kinet. Relat. Models 15(1), 119–146 (2022)

    MathSciNet  Google Scholar 

  16. Dyatlov, S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335(3), 1445–1485 (2015)

    ADS  MathSciNet  Google Scholar 

  17. Fajman, D., Joudioux, J., Smulevici, J.: A vector field method for relativistic transport equations with applications. Anal. PDE 10(7), 1539–1612 (2017)

    MathSciNet  Google Scholar 

  18. Fajman, D., Joudioux, J., Smulevici, J.: The stability of the Minkowski space for the Einstein–Vlasov system. Anal. PDE 14(2), 425–531 (2021)

    MathSciNet  Google Scholar 

  19. Glass, O., Han-Kwan, D.: On the controllability of the Vlasov–Poisson system in the presence of external force fields. J. Differ. Equ. 252(10), 5453–5491 (2012)

    ADS  MathSciNet  Google Scholar 

  20. Guo, Y., Lin, Z.: Unstable and stable galaxy models. Commun. Math. Phys. 279(3), 789–813 (2008)

    ADS  MathSciNet  Google Scholar 

  21. Guo, Y., Rein, G.: A non-variational approach to nonlinear stability in stellar dynamics applied to the King model. Commun. Math. Phys. 271(2), 489–509 (2007)

    ADS  MathSciNet  Google Scholar 

  22. Glassey, R.T., Strauss, W.A.: Absence of shocks in an initially dilute collisionless plasma. Commun. Math. Phys. 113(2), 191–208 (1987)

    ADS  MathSciNet  Google Scholar 

  23. Herau, F.: Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. 244(1), 95–118 (2007)

    MathSciNet  Google Scholar 

  24. Hintz, P.: Normally hyperbolic trapping on asymptotically stationary spacetimes. Probab. Math. Phys. 2(1), 71–126 (2021)

    MathSciNet  Google Scholar 

  25. Han-Kwan, D.: On propagation of higher space regularity for nonlinear Vlasov equations. Anal. PDE 12(1), 189–244 (2019)

    MathSciNet  Google Scholar 

  26. Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171(2), 151–218 (2004)

    MathSciNet  Google Scholar 

  27. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

    Google Scholar 

  28. Hwang, H.J., Rendall, A., Velázquez, J.J.L.: Optimal gradient estimates and asymptotic Behaviour for the Vlasov–Poisson system with small initial data. Arch. Ration. Mech. Anal. 200(1), 313–360 (2011)

    MathSciNet  Google Scholar 

  29. Ionescu, A.D., Pausader, B., Wang, X., Widmayer, K.: On the asymptotic behavior of solutions to the Vlasov–Poisson system. Int. Math. Res. Not. IMRN 12, 8865–8889 (2022)

    MathSciNet  Google Scholar 

  30. Jeans, J.H.: On the theory of star-streaming and the structure of the universe. Mon. Not. R. Astron. Soc. 76(2), 70–84, 12 (1915)

    ADS  Google Scholar 

  31. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38(3), 321–332 (1985)

    ADS  MathSciNet  Google Scholar 

  32. Lemou, M., Méhats, F., Raphael, P.: The orbital stability of the ground states and the singularity formation for the gravitational Vlasov–Poisson system. Arch. Ration. Mech. Anal. 189(3), 425–468 (2008)

    MathSciNet  Google Scholar 

  33. Lemou, M., Méhats, F., Raphaël, P.: A new variational approach to the stability of gravitational systems. Commun. Math. Phys. 302(1), 161–224 (2011)

    ADS  MathSciNet  Google Scholar 

  34. Lemou, M., Méhats, F., Raphaël, P.: Orbital stability of spherical galactic models. Invent. Math. 187(1), 145–194 (2012)

    ADS  MathSciNet  Google Scholar 

  35. Lifshitz, E. M., Pitaevskii, L. P.: Course of theoretical physics. Vol. 10. Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press, Oxford-Elmsford. Translated from the Russian by J. B. Sykes and R. N, Franklin (1981)

  36. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the \(3\)-dimensional Vlasov–Poisson system. Invent. Math. 105(2), 415–430 (1991)

    ADS  MathSciNet  Google Scholar 

  37. Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. Math. (2) 171(3), 1401–1477 (2010)

    MathSciNet  Google Scholar 

  38. Lindblad, H., Taylor, M.: Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge. Arch. Ration. Mech. Anal. 235(1), 517–633 (2020)

    MathSciNet  Google Scholar 

  39. Okabe, T., Ukai, S.: On classical solutions in the large in time of two-dimensional Vlasov’s equation. Osaka Math. J. 15(2), 245–261 (1978)

    MathSciNet  Google Scholar 

  40. Pfaffelmoser, K.: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95(2), 281–303 (1992)

    ADS  MathSciNet  Google Scholar 

  41. Pausader, B., Widmayer, K., Yang, J.: Stability of a point charge for the repulsive Vlasov–Poisson system. arXiv:2207.05644 (2022)

  42. Rein, G., Rendall, A.D.: Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics. Math. Proc. Camb. Philos. Soc. 128(2), 363–380 (2000)

    MathSciNet  Google Scholar 

  43. Schaeffer, J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Commun. Partial Differ. Equ. 16(8–9), 1313–1335 (1991)

    MathSciNet  Google Scholar 

  44. Schaeffer, J.: Steady states in galactic dynamics. Arch. Ration. Mech. Anal. 172(1), 1–19 (2004)

    MathSciNet  Google Scholar 

  45. Smulevici, J.: Small data solutions of the Vlasov–Poisson system and the vector field method. Ann. PDE 2(2), 1 (2016)

    MathSciNet  Google Scholar 

  46. Sánchez, Ó., Soler, J.: Orbital stability for polytropic galaxies. Ann. Inst. H. Poincaré C Anal. Non Linéaire 23(6), 781–802 (2006)

    ADS  MathSciNet  Google Scholar 

  47. Vlasov, A.A.: The vibrational properties of an electron gas. Sov. Phys. Usp. 10(6), 721–733 (1968)

    ADS  Google Scholar 

  48. Wang, X.: Propagation of regularity and long time behavior of the 3\(D\) massive relativistic transport equation II: Vlasov–Maxwell system. Commun. Math. Phys. 389(2), 715–812 (2022)

    ADS  MathSciNet  Google Scholar 

  49. Wunsch, J., Zworski, M.: Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré 12(7), 1349–1385 (2011)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

RVR would like to express his gratitude to his advisors Mihalis Dafermos and Clément Mouhot for their continued guidance and encouragements. RVR also would like to thank Léo Bigorgne and Jacques Smulevici for many helpful discussions. RVR received funding from the ANID grant 72190188, the Cambridge Trust grant 10469706, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant 101034255. AVR received funding from the grant FONDECYT Iniciación 11220409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Velozo Ruiz.

Additional information

Communicated by E. Smith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velozo Ruiz, A., Velozo Ruiz, R. Small Data Solutions for the Vlasov–Poisson System with a Repulsive Potential. Commun. Math. Phys. 405, 80 (2024). https://doi.org/10.1007/s00220-024-04970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04970-3

Navigation