Skip to main content
Log in

Symplectic Geometry of Character Varieties and SU(2) Lattice Gauge Theory I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Associated to any finite graph \(\Lambda \) is a closed surface \({\textbf{S}}={\textbf{S}}_\Lambda \), the boundary of a regular neighbourhood of an embedding of \(\Lambda \) in any three manifold. The surface retracts to the graph, mapping loops on the surface to loops on the graph. The (SU(2)) character variety \({{\mathcal {M}}}\) of \({\textbf{S}}\) has a symplectic structure and associated Liouville measure; on the other hand, the character variety \({\textbf{M}}\) of \(\Lambda \) carries a natural measure inherited from the Haar measure. Loops on \({\textbf{S}}\) define functions on the character varieties, the Wilson loops. By the works of W. Goldman, L. Jeffrey and J. Weitsman, the formalism of Duistermaat-Heckman applies to the relevant integrals over \({{\mathcal {M}}}\). We develop a calculus for calculating correlations of Wilson loops on \({{\mathcal {M}}}\) w.r.to the normalised Liouville measure, and present evidence that they approximate—for large graphs—the corresponding integrals over \({\textbf{M}}\). Lattice field theory involves integrals over \({\textbf{M}}\); we present “symplectic” analogues of expressions for partition functions, Wilson loop expectations, etc., in two and three space-time dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study. The author has no relevant financial or non-financial interests to disclose.

Notes

  1. This is standard terminology, although the Wilson loop is not a loop but a function associated to one.

  2. This is not the genus of the graph \(\Lambda \).

References

  1. Atiyah, M., Bott, R.: The Yang Mills equations over a Riemann surface. Philos. Trans. R. Soc. A308, 523 (1982)

    ADS  MathSciNet  Google Scholar 

  2. Audin, M.: Gauge Theory and Symplectic Geometry. NATO ASI Series (Series C: Mathematical and Physical Sciences). In: Hurtubise, J., Lalonde, F., Sabidussi, G. (eds.) Lectures on gauge theory and integrable systems, vol. 488. Springer, Dordrecht (1997)

    Google Scholar 

  3. Chatterjee, S.: Yang–Mills for probabilists. In: Probability and Analysis in Interacting Physical Systems: In Honor of S. R. S. Varadhan, pp. 1–16. Springer, Berlin (2019)

  4. Charles, L., Marché, J.: Multicurves and regular functions on the representation variety of a surface in \(SU(2)\). Comment. Math. Helv. 87, 409–431 (2012)

    Article  MathSciNet  Google Scholar 

  5. Driver, B.K.: YM2: continuum expectations, lattice convergence, and lassos. Commun. Math. Phys. 123, 575–616 (1989)

    Article  ADS  Google Scholar 

  6. Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Goldman, W.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85, 263–302 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gross, L., King, C., Sengupta, A.: Two-dimensional Yang–Mills theory via stochastic differential equations. Ann. Phys. 194, 65–112 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gross, D.J., Witten, E.: Possible third-order phase transition in the large-\(N\) lattice gauge theory. Phys. Rev. D 21, 446–453 (1980)

    Article  ADS  Google Scholar 

  10. Jeffrey, L.C., Weitsman, J.: Toric structures on the moduli space of flat connections on a riemann surface: volumes and the moment map. Adv. Math. 106, 151–168 (1994)

    Article  MathSciNet  Google Scholar 

  11. Kouba, O.: Lecture Notes, Bernoulli Polynomials and Applications. arXiv:1309.7560

  12. Lévy, T.: Two-dimensional Markovian holonomy fields. Astérisque 329 (2010)

  13. Migdal, A.A.: Recursion equations in Gauge theories. Zh. Eksp. Teor. Fiz. 69, 810–822 (1975)

    Google Scholar 

  14. Migdal, A.A.: Recursion equations in Gauge theories. Sov. Phys. JETP 42, 413 (1975)

    ADS  Google Scholar 

  15. Sengupta, A.: The Yang–Mills measure for \(S^2\). Funct. Anal. 108, 231–273 (1992)

    Article  MathSciNet  Google Scholar 

  16. Tomboulis, E.T., Yaffe, L.G.: Finite temperature \(SU(2)\) lattice gauge theory. Commun. Math. Phys. 100, 313–341 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. Tyurin, A.: Quantization, classical and quantum field theory and theta-functions. CRM Monogr. Ser. 21, 136 (2003)

    MathSciNet  Google Scholar 

  18. Wheeler, C.: MPIM master’s thesis. https://guests.mpim-bonn.mpg.de/cjwh/files/MastersThesis.pdf

  19. Wilson, K.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  ADS  Google Scholar 

  20. Witten, E.: On quantum Gauge theories in two dimensions. Commun. Math. Phys. 141, 153–209 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Mahan Mj for tutorials on pants decompositions, K.N. Raghavan for help with Schur-Weyl duality, and S. Gupta, A. Ladha and P.K. Mitter for valuable feedback regarding this manuscript. I thank a referee for a patient and careful reading of an earlier version of the manuscript and detailed comments. This work is partially supported by the Infosys Foundation and (in its initial stages) by the Department of Science and Technology, via a J.C. Bose Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Ramadas.

Additional information

Communicated by S. Chatterjee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The operator M

Appendix A: The operator M

Proposition A.1

Given \(u,v \in [0,1]\) the operator \(N_uN_v\) is trace class and

$$\begin{aligned} M(s,t) \equiv Tr(N_sN_t)= {\left\{ \begin{array}{ll} 2t(1-s)&{} \textrm{if} \ s \ge t\\ 2s(1-t)&{} \textrm{if} \ t \ge s\\ \end{array}\right. } \end{aligned}$$

Proof

The trace is given by the integral of the kernel along the diagonal. But \(\int _0^1 \int _0^1 {\textbf{1}}_{{{\mathcal {P}}}_s} (u,v) {\textbf{1}}_{{{\mathcal {P}}}_t}(v,u) du dv\) is the area of the intersection \({{\mathcal {P}}}_s \cap {{\mathcal {P}}}_t\):

figure b

Here is a more computational proof. Since the operators \(N_s,N_t\) are simultaneously diagonalised,

$$\begin{aligned} \begin{aligned} Tr(N_sN_t)&=\sum _{n=0}^\infty \frac{4}{(n+1)^2 \pi ^2} \sin {(n+1)\pi s} \sin {(n+1)\pi t}\\&=2\sum _{n=0}^\infty \frac{1}{(n+1)^2 \pi ^2} \{ \cos {2(n+1)\pi (\frac{s-t}{2})}-\cos {2(n+1)\pi (\frac{s+t}{2})} \} \end{aligned} \end{aligned}$$

We have \(0 \le \frac{s+t}{2} \le 1\); further, If \(s \ge t\), we also have \(0 \le \frac{s-t}{2} \le 1\). So the trigonometric sums can be identified with the Bernoulli polynomials, and we get

$$\begin{aligned} \begin{aligned} Tr(N_sN_t)&=2\{B_2(\frac{s-t}{2})-B_2(\frac{s+t}{2})\}\\&=2\big \{\frac{(s-t)^2}{4}-\frac{s-t}{2}-\frac{(s+t)^2}{4}+\frac{s+t}{2}\big \}\\&=2(t-st)=2t(1-s) \end{aligned} \end{aligned}$$

\(\square \)

Corollary A.2

We have

$$\begin{aligned} \int dt_3 \vec {u}_{n_3}(t_3) N_{t_3}=\frac{\sqrt{2}}{(n_3+1) \pi } P_{n_3} \end{aligned}$$

where \(P_{n}\) is the projection to the span of \(\vec {u}_{n}\).

Proof

This is a direct computation.

$$\begin{aligned} \begin{aligned} \{[\int \vec {u}_{n_3}(t_3) N_{t_3}\ dt_3] \vec {u}_{n_1}\}(t_2)&= \int \vec {u}_{n_3}(t_3) \{N_{t_3} \vec {u}_{n_1}\}(t_2) \ dt_3 \\&=\int \vec {u}_{n_3}(t_3) \frac{2}{(n_1+1)\pi }\sin {(n_1+1) \pi t_3}\ \vec {u}_{n_1}(t_2)\ dt_3 \\&=\frac{\sqrt{2}}{(n_1+1) \pi } (\vec {u}_{n_3},\vec {u}_{n_1})_{L^2([0,1])} \vec {u}_{n_1}(t_2)\\&=\delta _{n_3,n_1}\frac{\sqrt{2}}{(n_1+1) \pi } \vec {u}_{n_1}(t_2) \end{aligned} \end{aligned}$$

\(\square \)

Let M denote the integral operator with kernel M(st).

Proposition A.3

The (normalised) eigenfunctions and corresponding eigenvalues of M are

$$\begin{aligned} (\vec {u}_n(t) \equiv \sqrt{2} \sin {(n+1) \pi t},\ \frac{2}{(n+1)^2 \pi ^2} ),\quad n=0,1, \dots \end{aligned}$$

Proof

The first proof uses the definition:

$$\begin{aligned} \begin{aligned} M \vec {u}_n (s)&=\int dt M(s,t) \vec {u}_n(t)=\int dt \ Tr(N_sN_t)\vec {u}_n(t)\\&=Tr(N_s [\int dt\ \vec {u}_n(t)N_t]))=\frac{\sqrt{2}}{(n+1) \pi }Tr(N_s P_{n})\\&=\frac{\sqrt{2}}{(n+1) \pi } \frac{2 \sin {(n+1) \pi s}}{(n+1) \pi }=\frac{2}{(n+1)^2 \pi ^2} \vec {u}_n (s) \end{aligned} \end{aligned}$$

The second proof uses the expression for the kernel M(st):

$$\begin{aligned}{} & {} M(s,t) \equiv Tr(N_sN_t)= {\left\{ \begin{array}{ll} 2t(1-s)&{} \textrm{if} \ s \ge t\\ 2s(1-t)&{} \textrm{if} \ t \ge s\\ \end{array}\right. }\\{} & {} M \vec {u}_n (s)=\int M(s,t) \vec {u}_n(t)\ dt\\{} & {} \quad =\sqrt{2}\int _0^s \ 2t(1-s) \sin {(n+1)\pi t}+\sqrt{2} \int _s^1 dt\ 2s(1-t) \sin {(n+1)\pi t} \ dt\\{} & {} \quad =-2s\sqrt{2}\int _0^1 \ t \sin {(n+1)\pi t}+\sqrt{2}\int _0^s dt\ 2t \sin {(n+1)\pi t}\\{} & {} \qquad +\,\sqrt{2} \int _s^1 dt\ 2s \sin {(n+1)\pi t} \ dt\\{} & {} \quad =-2s\sqrt{2}\{-\frac{1}{(n+1) \pi }\cos {(n+1)\pi }\}+2\sqrt{2}\{\frac{1}{(n+1)^2\pi ^2}\sin {(n+1)\pi s}\\{} & {} \qquad -\frac{s}{n\pi }\cos {(n+1)\pi s}\}-\sqrt{2}\frac{2s}{(n+1)\pi } (\cos {(n+1)\pi }-\cos {(n+1)\pi s})\\{} & {} \quad =\frac{2}{(n+1)^2 \pi ^2}\vec {u}_n(s) \end{aligned}$$

\(\square \)

We have used the following:

Lemma A.4

$$\begin{aligned} \int _0^s t \sin {xt} \ dt=\frac{1}{x^2}\sin {xs}-\frac{s}{x}\cos {xs} \end{aligned}$$

Proof

Set \(I(x,s) \equiv -\int _0^s \cos {xt}\ dt=-\frac{1}{x}[\sin {xt}]^s_0=-\frac{1}{x}\sin {xs}\). Then

$$\begin{aligned} \begin{aligned} \int _0^s t \sin {xt} \ dt=\frac{d}{dx}I(x,s)&=\frac{1}{x^2}\sin {xs}-\frac{s}{x}\cos {xs} \end{aligned} \end{aligned}$$

\(\square \)

Here is a computation of the volume of \({{\mathcal {M}}}_{{\textsf{b}}}\) that mimics the computation using the Verlinde formula, except that we use our continuous analogue. Note first that for any \(l \ge 1\)

$$\begin{aligned} M^l \vec {u}_n=(\frac{2}{(n+1)^2 \pi ^2})^l \vec {u}_n \end{aligned}$$

If we express \({\textbf{S}}\) as a cyclic union of \({{\textsf{b}}}-1\) tori, and take the obvious periodic pants decomposition, the volume of the corresponding polytope is

$$\begin{aligned} \begin{aligned} Tr(M^{{{\textsf{b}}}-1})&=\sum _{n=0}^\infty (\frac{2}{(n+1)^2\pi ^2})^{{{\textsf{b}}}-1}= (\frac{2}{\pi ^2})^{{{\textsf{b}}}-1} \sum _{n=0}^\infty \frac{1}{(n+1)^{2({{\textsf{b}}}-1)}}\\&=\frac{2^{({{\textsf{b}}}-1)}}{\pi ^{2({{\textsf{b}}}-1)}} \zeta (({{\textsf{b}}}-1))\\ \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadas, T.R. Symplectic Geometry of Character Varieties and SU(2) Lattice Gauge Theory I. Commun. Math. Phys. 405, 99 (2024). https://doi.org/10.1007/s00220-024-04968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04968-x

Navigation