Skip to main content
Log in

Higher Dimensional Analogon of Borcea-Voisin Calabi-Yau Manifolds, Their Hodge Numbers and L-Functions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a series of examples of Calabi-Yau manifolds in an arbitrary dimension and compute the main invariants. In particular, we give higher dimensional generalization of Borcea-Voisin Calabi-Yau threefolds. We give a method to compute a local zeta function using the Frobenius morphism for orbifold cohomology introduced by Rose. We compute Hodge numbers of the constructed examples using orbifold Chen-Ruan cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artebani, M., Boissière, S., Sarti, A.: The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3 surfaces. J. Math. Pures Appl. (9) 102(4), 758–781 (2014). https://doi.org/10.1016/j.matpur.2014.02.005. (issn: 0021-7824)

    Article  MathSciNet  Google Scholar 

  2. Adem, A., Leida, J., Ruan, Y.: Orbifolds and stringy topology. Cambridge Tracts in Mathematics, vol. 171. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511543081

    Book  Google Scholar 

  3. Ahlgren, S., Ono, K., Penniston, D.: Zeta functions of an infinite family of K3 surfaces English (US). Am. J. Math. 124(2), 353–368 (2002). https://doi.org/10.1353/ajm.2002.0007. (issn: 0002-9327)

    Article  Google Scholar 

  4. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994). (issn: 1056-3911)

    MathSciNet  Google Scholar 

  5. Borcea, C.: \(K3\) surfaces with involution and mirror pairs of Calabi-Yau manifolds. In: Mirror Symmetry, II. Vol. 1. AMS/IP Stud. Adv. Math. Am. Math. Soc., pp. 717–743 (1997)

  6. Burek, D.: MAPLE procedures computing Poincaré polynomials of manifolds \(X_{d,n}\) and \(Y_{d,n}\), available at: https://dominik-burek.u.matinf.uj.edu.pl/LCY

  7. Burek, D.: Hodge numbers of generalised Borcea-Voisin threefolds. In: Phenomenological approach to algebraic geometry. Vol. 116. Banach Center Publ. Polish Acad. Sci. Inst. Math., Warsaw, pp. 47–62 (2018)

  8. Burek, D.: Higher dimensional Calabi-Yau manifolds of Kummer type. Math. Nachr. 293(4), 638–650 (2020). https://doi.org/10.1002/mana.201800487. (issn: 0025-584X)

    Article  MathSciNet  Google Scholar 

  9. Cattaneo, A., Garbagnati, A.: Calabi-Yau 3-folds of Borcea-Voisin type and elliptic fibrations. Tohoku Math. J. 68(4), 515–558 (2016). https://doi.org/10.2748/tmj/1486177214

    Article  MathSciNet  Google Scholar 

  10. Cattaneo, A., Garbagnati, A., Penegini, M.: Calabi-Yau 4-folds of Borcea-Voisin type from F-theory. Pacific J. Math. 299(1), 1–31 (2019). https://doi.org/10.2140/pjm.2019.299.1. (issn: 0030-8730.)

    Article  MathSciNet  Google Scholar 

  11. Cynk, S.: Hulek, Klaus: higher-dimensional modular Calabi-Yau manifolds. Canad. Math. Bull. 50(4), 486–503 (2007). https://doi.org/10.4153/CMB-2007-049-9

    Article  MathSciNet  Google Scholar 

  12. Chiodo, A., Kalashnikov, E., Veniani, D.C.: Semi-Calabi-Yau orbifolds and mirror pairs. Adv. Math. 363, 106998 (2020). https://doi.org/10.1016/j.aim.2020.106998

    Article  MathSciNet  Google Scholar 

  13. Comparin, P., Priddis, N.: BHK mirror symmetry for K3 surfaces with non-symplectic automorphism. J. Math. Soc. Japan 73(2), 403–431 (2021). https://doi.org/10.2969/jmsj/79867986. (issn: 0025-5645.)

    Article  MathSciNet  Google Scholar 

  14. Chen, W., Ruan, Y.: A new cohomology theory of orbifold. Comm. Math. Phys. 248(1), 1–31 (2004). https://doi.org/10.1007/s00220-004-1089-4. (issn: 0010-3616.)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dillies, Jy.: Generalized Borcea-Voisin construction. Lett. Math. Phys. 100(1), 77–96 (2012). https://doi.org/10.1007/s11005-011-0528-3. (issn: 0377-9017.)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dillies, Jimmy: On some order 6 non-symplectic automorphisms of elliptic K3 surfaces. Albanian J. Math. 6(2), 103–114 (2012). (issn: 1930-1235)

    Article  MathSciNet  Google Scholar 

  17. Dixon, L., et al.: Strings on orbifolds. Nuclear Phys. B 261(4), 678–686 (1985). https://doi.org/10.1016/0550-3213(85)90593-0. (issn: 0550-3213.)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dixon, L., et al.: Strings on orbifolds. II. Nuclear Phys. B 274(2), 285–314 (1986). https://doi.org/10.1016/0550-3213(86)90287-7. (issn: 0550-3213.)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dieulefait, Luis, Manoharmayum, J: Modularity of rigid Calabi-Yau threefolds over \({\mathbb{Q}}\). In: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001). Vol. 38. Fields Inst. Commun. Amer. Math. Soc., pp. 159–166. (2003) https://doi.org/10.4310/mrl.2003.v10.n2.a1

  20. Donagi, R.: On orbifolds and free fermion constructions. J. Geom. Phys. 59(7), 942–968 (2009). https://doi.org/10.1016/j.geomphys.2009.04.004. (issn: 0393-0440.)

    Article  ADS  MathSciNet  Google Scholar 

  21. Goto, Y., Livné, R., Yui, N.: Automorphy of Calabi-Yau threefolds of Borcea-Voisin type over \({\mathbb{Q} }\). Commun. Number Theory Phys. 7(4), 581–670 (2013). https://doi.org/10.4310/CNTP.2013.v7.n4.a2. (issn: 1931-4523.)

    Article  MathSciNet  Google Scholar 

  22. Gouvêa, F.Q., Yui, Noriko: Rigid Calabi-Yau threefolds over \({\mathbb{Q} }\) are modular. Expo. Math. 29(1), 142–149 (2011). https://doi.org/10.1016/j.exmath.2010.09.001. (issn: 0723-0869.)

    Article  MathSciNet  Google Scholar 

  23. Nikulin, V.V.: Finite groups of automorphisms of Kählerian \(K3\) surfaces. Trudy Moskov. Mat. Obshch. 38, 75–137 (1979). (issn: 0134-8663)

    MathSciNet  Google Scholar 

  24. Nikulin, V. V.: Discrete reflection groups in Lobachevsky spaces and algebraic surfaces. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986). Amer. Math. Soc., pp. 654–671 (1987)

  25. Rohde, Jan Christian: Cyclic coverings, Calabi-Yau manifolds and complex multiplication. Lecture Notes in Mathematics, vol. 1975, p. x+228. Springer-Verlag, Berlin (2009). https://doi.org/10.1007/978-3-642-00639-5

    Book  Google Scholar 

  26. Rohde, Jan Christian: Maximal automorphisms of Calabi-Yau manifolds versus maximally unipotent monodromy. Manuscripta Math. 131(3–4), 459–474 (2010). https://doi.org/10.1007/s00229-009-0329-5

    Article  MathSciNet  Google Scholar 

  27. Rose, Michael A.: Frobenius action on \(\ell \)-adic Chen-Ruan cohomology. Commun. Number Theory Phys. 1(3), 513–537 (2007). https://doi.org/10.4310/cntp.2007.v1.n3.a3

    Article  MathSciNet  Google Scholar 

  28. Schoen, Chad: On fiber products of rational elliptic surfaces with section. Math. Z. 197(2), 177–199 (1988). https://doi.org/10.1007/BF01215188. (issn: 0025-5874.)

    Article  MathSciNet  Google Scholar 

  29. Voisin, C.: Miroirs et involutions sur les surfaces \(K3\)”. In: 218. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992), pp. 273–323 (1993)

  30. Vafa, Cumrun, Witten, Edward: On orbifolds with discrete torsion. J. Geom. Phys. 15(3), 189–214 (1995). https://doi.org/10.1016/0393-0440(94)00048-9. (issn: 0393-0440.)

    Article  ADS  MathSciNet  Google Scholar 

  31. Yasuda, Takehiko: Twisted jets, motivic measures and orbifold cohomology. Compos. Math. 140(2), 396–422 (2004). https://doi.org/10.1112/S0010437X03000368. (issn: 0010-437X.)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is a part of author’s PhD thesis. I am deeply grateful to my advisor Sławomir Cynk for his enormous help. I would like to thank Matthias Schütt for helpful suggestions and comments. The author is supported by the National Science Center of Poland grant no. 2019/33/N/ST1/01502 and National Science Center of Poland grant no. 2020/36/T/ST1/00265. The final part of this work was conducted during the stay at the Leibniz Universität in Hannover. I would like to thank the institute for hospitality. Finally I would like to thank the anonymous referee for remarks and advices that substantially improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Burek.

Additional information

Communicated by E. Smith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burek, D. Higher Dimensional Analogon of Borcea-Voisin Calabi-Yau Manifolds, Their Hodge Numbers and L-Functions. Commun. Math. Phys. 405, 100 (2024). https://doi.org/10.1007/s00220-024-04965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04965-0

Navigation