Skip to main content
Log in

Global Solutions with Asymptotic Self-Similar Behaviour for the Cubic Wave Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a two-parameter family of explicit solutions to the cubic wave equation on \({\mathbb {R}}^{1+3}\). Depending on the value of the parameters, these solutions either scatter to linear, blow-up in finite time, or exhibit a new type of threshold behaviour which we characterize precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. See [25, Appendix A.4] Alternatively, see [36, Lemma A.1] for a source that does not rely on tools from conformal geometry.

  2. We will give an explicit expression for these solutions at the end of this subsection.

  3. Denoting as usual \(\frac{\partial }{\partial t}\) the derivative with respect to t at fixed r.

References

  1. Alinhac, S.: Blowup for Nonlinear Hyperbolic Equations. Birkhäuser Boston Inc., Boston (1995)

    Book  Google Scholar 

  2. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  3. Bizoń, P., Breitenlohner, P., Maison, D., Wasserman, A.: Self-similar solutions of the cubic wave equation. Nonlinearity 23(2), 225–236 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bizoń, P., Chmaj, T., Tabor, Z.: On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity 17(6), 2187–2201 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bizoń, P., Maison, D., Wasserman, A.: Self-similar solutions of semilinear wave equations with a focusing nonlinearity. Nonlinearity 20(9), 2061–2074 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bizoń, P., Zenginoğlu, A.: Universality of global dynamics for the cubic wave equation. Nonlinearity 22(10), 2473–2485 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Collot, C., Duyckaerts, T., Kenig, C., Merle, F.: On classification of non-radiative solutions for various energy-critical wave equations. Adv. Math. 434, 109337 (2023)

  8. Csobo, E., Glogić, I., Schörkhuber, B.: On blowup for the supercritical quadratic wave equation. Anal. PDE 17(2), 617–680 (2024)

    Article  MathSciNet  Google Scholar 

  9. Dodson, B., Lawrie, A.: Scattering for the radial 3D cubic wave equation. Anal. PDE 8(2), 467–497 (2015)

    Article  MathSciNet  Google Scholar 

  10. Donninger, R.: Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation. Duke Math. J. 166(9), 1627–1683 (2017)

    Article  MathSciNet  Google Scholar 

  11. Donninger, R., Schörkhuber, B.: On blowup in supercritical wave equations. Commun. Math. Phys. 346(3), 907–943 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Donninger, R., Schörkhuber, B.: Stable blowup for wave equations in odd space dimensions. Ann. Inst. H. Poincaré C Anal. Non Linéaire 34(5), 1181–1213 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Donninger, R., Schörkhuber, B.: Stable self-similar blow up for energy subcritical wave equations. Dyn. Partial Differ. Equ. 9(1), 63–87 (2012)

    Article  MathSciNet  Google Scholar 

  14. Donninger, R., Zenginoğlu, A.: Nondispersive decay for the cubic wave equation. Anal. PDE 7(2), 461–465 (2014)

    Article  MathSciNet  Google Scholar 

  15. Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Soliton resolution along a sequence of times for the focusing energy critical wave equation. Geom. Funct. Anal. 27(4), 798–862 (2017)

    Article  MathSciNet  Google Scholar 

  16. Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math. 1(1), 75–144 (2013)

    Article  MathSciNet  Google Scholar 

  17. Duyckaerts, T., Kenig, C., Merle, F.: Scattering for radial, bounded solutions of focusing supercritical wave equations. Int. Math. Res. Not. IMRN 2014(1), 224–258 (2014)

    Article  MathSciNet  Google Scholar 

  18. Duyckaerts, T., Kenig, C., Merle, F.: Scattering profile for global solutions of the energy-critical wave equation. J. Eur. Math. Soc. (JEMS) 21(7), 2117–2162 (2019)

    Article  MathSciNet  Google Scholar 

  19. Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energycritical wave equation. Int. Math. Res. Pap. IMRP (2008), Art ID rpn002, 67

  20. Duyckaerts, T., Roy, T.: Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on \(\mathbb{R} ^3\). Bull. Soc. Math. France 145(3), 503–573 (2017)

    Article  MathSciNet  Google Scholar 

  21. Duyckaerts, T., Yang, J.: Blow-up of a critical Sobolev norm for energysubcritical and energy-supercritical wave equations. Anal. PDE 11(4), 983–1028 (2018)

    Article  MathSciNet  Google Scholar 

  22. Eckhaus, W., Schuur, P.: The emergence of solitons of the Korteweg–de Vries equation from arbitrary initial conditions. Math. Methods Appl. Sci. 5(1), 97–116 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  23. Glogić, I., Maliborski, M., Schörkhuber, B.: Threshold for blowup for the supercritical cubic wave equation. Nonlinearity 33(5), 2143–2158 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Glogić, I., Schörkhuber, B.: Co-dimension one stable blowup for the supercritical cubic wave equation. Adv. Math. 390, 79 (2021)

    Article  MathSciNet  Google Scholar 

  25. Hörmander, L.: Lectures on Nonlinear Hyperbolic Equations. Springer-Verlag, Berlin (1997)

    Google Scholar 

  26. Kavian, O., Weissler, F.B.: Finite energy self-similar solutions of a nonlinear wave equation. Commun. Partial Differ. Equ. 15(10), 1381–1420 (1990)

    Article  MathSciNet  Google Scholar 

  27. Killip, R., Stovall, B., Visan, M.: Blowup behaviour for the nonlinear Klein-Gordon equation. Math. Ann. 358(1–2), 289–350 (2014)

    Article  MathSciNet  Google Scholar 

  28. Krieger, J., Nahas, J.: Instability of type II blow up for the quintic nonlinear wave equation on \(\mathbb{R} ^3+1\). Bull. Soc. Math. France 143(2), 339–355 (2015)

    Article  MathSciNet  Google Scholar 

  29. Krieger, J., Nakanishi, K., Schlag, W.: Center-stable manifold of the ground state in the energy space for the critical wave equation. Math. Ann. 361(1–2), 1–50 (2015)

    Article  MathSciNet  Google Scholar 

  30. Krieger, J., Schlag, W.: Large global solutions for energy supercritical nonlinear wave equations on \(\mathbb{R} ^3+1\). J. Anal. Math. 133, 91–131 (2017)

    Article  MathSciNet  Google Scholar 

  31. Merle, F., Raphaël, P.: Blow up of the critical norm for some radial \(L^2\) super critical nonlinear Schrödinger equations. Amer. J. Math. 130(4), 945–978 (2008)

    Article  MathSciNet  Google Scholar 

  32. Merle, F., Zaag, H.: Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions. Trans. Am. Math. Soc. 368(1), 27–87 (2016)

    Article  MathSciNet  Google Scholar 

  33. Merle, F., Zaag, H.: Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253(1), 43–121 (2007)

    Article  MathSciNet  Google Scholar 

  34. Merle, F., Zaag, H.: On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Commun. Math. Phys. 333(3), 1529–1562 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Merle, F., Zaag, H.: Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation. Commun. Math. Phys. 282(1), 55–86 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. Negro, G., Oliveira e Silva, D., Stovall, B., Tautges, J.: Exponentials rarely maximize Fourier extension inequalities for cones. arXiv:2302.00356

  37. Shen, R.: On the energy subcritical, nonlinear wave equation in \(\mathbb{R} ^3\) with radial data. Anal. PDE 6(8), 1929–1987 (2014)

    Article  Google Scholar 

  38. Tao, T.: Nonlinear Dispersive Equations. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Negro.

Additional information

Communicated by K. Nakanishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duyckaerts, T., Negro, G. Global Solutions with Asymptotic Self-Similar Behaviour for the Cubic Wave Equation. Commun. Math. Phys. 405, 84 (2024). https://doi.org/10.1007/s00220-024-04962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04962-3

Navigation