Skip to main content
Log in

\(N\,\text {=}\,2\) Supersymmetric Structures on Classical W-algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a \(N=2\) supersymmetric Poisson vertex algebra structure of \(N=1\) (resp. \(N=0\)) classical W-algebra associated with \({{\mathfrak {s}}}{{\mathfrak {l}}}(n+1|n)\) and the odd (resp. even) principal nilpotent element. This \(N=2\) supersymmetric structure is connected to the principal \({{\mathfrak {s}}}{{\mathfrak {l}}}(2|1)\)-embedding in \({{\mathfrak {s}}}{{\mathfrak {l}}}(n+1|n)\) superalgebras, which are the only basic Lie superalgebras that admit such a principal embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ademollo, M., Brink, L., D’Adda, A., D’Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., Pettorino, R.: Supersymmetric strings and colour confinement. Phys. Lett. B 62(1), 105–110 (1976)

    Article  ADS  Google Scholar 

  2. Barakat, A., De Sole, A., Kac, V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4, 141–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barron, K.: \(N=1\) Neveu–Schwarz Vertex Operator Superalgebras over Grassmann Algebras and with Odd Formal Variables, pp. 9–35. China Higher Education Press (CHEP), Beijing (2000)

    MATH  Google Scholar 

  4. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241(2), 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ben-Zvi, D., Heluani, R., Szczesny, M.: Supersymmetry of the chiral de Rham complex. Compos. Math. 144(2), 503–521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berenstein, D., Maldacena, J., Nastase, H.: Strings in flat space and pp waves from \({\mathscr {N}}=4\) super Yang Mills. J. High Energy Phys. 20024(13), 30 (2002)

    MathSciNet  Google Scholar 

  7. Bern, Z., Dixon, L.J. , Kosower, D.A., Roiban, Spradlin, M., Vergu, C., Volovich, A.: Two-loop six-gluon maximally helicity violating amplitude in maximally supersymmetric Yang–Mills theory. Phys. Rev. D 78(4):045007, 25 (2008)

  8. Bershadsky, M., Lerche, W., Nemeschansky, D., Warner, N.: Extended N=2 superconformal structure of gravity and W-gravity coupled to matter. Nucl. Phys. B 401(1–2), 304–347 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Borcherds, R.E.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Nat. Acad. Sci. USA 83(10), 3068–3071 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bouwknegt, P., Schoutens, K.: \({\mathscr {W}}\) symmetry in conformal field theory. Phys. Rep. 223(4), 183–276 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nuclear Phys. B 258(1), 46–74 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  12. Carpentier, S., Suh, U.R.: Supersymmetric bi-Hamiltonian systems. Commun. Math. Phys. 382(1), 317–350 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Delduc, F., Gallot, L.: KP and KdV hierarchies in extended superspace. Commun. Math. Phys. 190(2), 395–410 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Delduc, F., Ragoucy, E., Sorba, P.: Super-Toda theories and \(W\)-algebras from superspace Wess–Zumino–Witten models. Commun. Math. Phys. 146(2), 403–426 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Delius, G.W.: The \(N=2\) super-Kac–Moody algebra and the WZW-model in \((2,0)\) superspace. Int. J. Mod. Phys. A 5(24), 4753–4767 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Drummond, J.M., Henn, J., Korchemsky, G.P., Sokatchev, E.: Dual superconformal symmetry of scattering amplitudes in \({{\mathscr {N}}}=4\) super-Yang–Mills theory. Nuclear Phys. B 828(1–2), 317–374 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Figueroa-O’Farrill, J.M., Ramos, E.: Classical \({N}=2\)\(W\)-superalgebras and supersymmetric Gel’fand–Dickey brackets. Nuclear Phys. B 368(2), 361–376 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. Frappat, L., Sciarrino, A., Sorba, P.: Dictionary on Lie Algebras and Superalgebras. Academic Press, San Diego. With 1 CD-ROM (Windows, Macintosh and UNIX) (2000)

  19. Friedan, D., Martinec, E., Shenker, S.: Conformal invariance, supersymmetry and string theory. Nuclear Phys. B 271(1), 93–165 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gaiotto, D., Witten, E.: Supersymmetric boundary conditions in \({\mathscr {N}}=4\) super Yang–Mills theory. J. Stat. Phys. 135(5–6), 789–855 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gato-Rivera, B., Semikhatov, A.M.: \(d\le 1\bigcup d\ge 25\) and constrained KP hierarchy from BRST invariance in the \(c\ne 3\) topological algebra. Phys. Lett. B 293(1–2), 72–80 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gepner, D., Witten, E.: String theory on group manifolds. Nuclear Phys. B 278(3), 493–549 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nuclear Phys. B 492(1–2), 152–190 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Heluani, R.: SUSY vertex algebras and supercurves. Commun. Math. Phys. 275(3), 607–658 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Heluani, R., Kac, V.G.: Supersymmetric vertex algebras. Commun. Math. Phys. 271(1), 103–178 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hoyt, C.: Good gradings of basic Lie superalgebras. Isr. J. Math. 192(1), 251–280 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Inami, T., Matsuo, Y., Yamanaka, I.: Extended conformal algebras with \(N=1\) supersymmetry. Phys. Lett. B 215(4), 701–705 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kac, V.G.: Vertex Algebras for Beginners, Volume 10 of University Lecture Series, 2nd edn. American Mathematical Society, Providence (1998)

    Google Scholar 

  29. Kac, V.G., Roan, S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2–3), 307–342 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess–Zumino model in two dimensions. Nuclear Phys. B 247(1), 83–103 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Laberge, C.A., Mathieu, P.: \(N=2\) superconformal algebra and integrable \(O(2)\) fermionic extensions of the Korteweg–de Vries equation. Phys. Lett. B 215(4), 718–722 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  32. Madsen, J.O., Ragoucy, E.: Quantum Hamiltonian reduction in superspace formalism. Nuclear Phys. B 429(2), 277–290 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Molev, A., Ragoucy, E., Suh, U.R.: Supersymmetric \(W\)-algebras. Lett. Math. Phys. 111(1):Paper No. 6, 25 (2021)

  34. Park, M.: Classical W-algebras associated to lie superalgebras. Master thesis in Seoul National University

  35. Pope, C.N.: Review of W strings. In: Proceedings of International Symposium on Black Holes, Worm Holes, Membranes and Superstrings. Woodlands (1992)

  36. Ragoucy, E., Sevrin, A., Sorba, P.: Strings from \({N}=2\) gauged Wess–Zumino–Witten models. Commun. Math. Phys. 181(1), 91–129 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ragoucy, E., Song, A., Suh, U.R.: Work in progress

  38. Ragoucy, E., Song, A., Suh, U.R.: Generators of supersymmetric classical \(W\)-algebras. Commun. Math. Phys. 397(1), 111–139 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ragoucy, E., Sorba, P.: Super–Kac–Moody algebras and the \(N=2\) superconformal case. Phys. Lett. B 245(3–4), 465–470 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. Suh, U.R.: Structures of (supersymmetric) classical W-algebras. J. Math. Phys. 61(11), 111701, 27 (2020)

  41. Wakimoto, M.: Infinite-Dimensional Lie Algebras, Volume 195 of Translations of Mathematical Monographs. American Mathematical Society, Providence (2001). Translated from the 1999 Japanese original by Kenji Iohara, Iwanami Series in Modern Mathematics

  42. Witten, E.: Nonabelian bosonization in two dimensions. Commun. Math. Phys. 92(4), 455–472 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Zamolodchikov, A.B.: Infinite extra symmetries in two-dimensional conformal quantum field theory. Teoret. Mat. Fiz. 65(3), 347–359 (1985)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

E. Ragoucy warmly thanks the Seoul National University for partial support, and for the kind hospitality when part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uhi Rinn Suh.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Arim Song, Uhi Rinn Suh: This work was supported by NRF Grant, #2022R1C1C1008698 and Creative-Pioneering Researchers Program through Seoul National University. Arim Song: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00272036).

Appendix A: Proofs of Propositions and Theorems

Appendix A: Proofs of Propositions and Theorems

We consider the decomposition \({\mathfrak {g}}= \bigoplus _{i=1}^{2n} R_i\) of \({\mathfrak {g}}\) into irreducible \(\mathfrak {osp}(1|2)\)-module \(R_i\) of dimension \(2i+1\) together with the dual bases \({\mathcal {B}}= \{v_i^{(m)}|(i,m)\in {{\mathcal {J}}} \}\) and \({\mathcal {B}}^\perp = \{{\tilde{v}}^i_{(m)}|(i,m)\in {{\mathcal {J}}}\}\) of \({\mathfrak {g}}\) introduced in section 4.2, where \({{\mathcal {J}}}= \{(i,m)|i=1,2,\ldots , 2n, \, m=0,1,\ldots , 2i\}\). Suppose \(E=v_2^{(0)}\in {\mathcal {B}}\) and \(E,F,H,f, e, {\tilde{f}}, {\tilde{e}}, U \in R_1 \oplus R_2 \subset {\mathfrak {g}}\) satisfy (sl-1)–(sl-4) in section 2.2. We can assume

$$\begin{aligned}{}[{\tilde{f}}, v_{2i}^{(0)}]=-v_{2i-1}^{(0)}\end{aligned}$$

for any \(i=1,2,\ldots , n\). Then, from \([{\tilde{f}}, f]=0\) and \((\text {ad}{\tilde{f}})^2=-(\text {ad}f)^2\), we get

$$\begin{aligned}{}[{\tilde{f}}, v_{2i-1}^{(t)}]= (-1)^t\,v_{2i}^{(t+2)}, \quad [{\tilde{f}}, v_{2i}^{(s)}]=(-1)^{s+1}\,v_{2i-1}^{(s)}, \end{aligned}$$
(A.1)

for \(t=0,1,\ldots , 2i-2\) and \(s= 2,3,\ldots , 2i\). In addition, since \( {\tilde{v}}^\alpha _{(2\alpha )}\) is of parity \(\alpha \) (mod 2) and belongs to the one dimensional space \({\mathfrak {g}}^e \cap {\mathfrak {g}}(\alpha )= {\mathbb {C}}\cdot \left( \sum _{\beta =1}^{2n-\alpha +1}e_{\beta , \alpha +\beta }\right) \), we can show \([{\tilde{v}}^i_{(2i)}, {\tilde{v}}^j_{(2j)}]= 0\) if i or j is even. Finally, we remind that

$$\begin{aligned} v_i^{(m)}\in {\mathfrak {g}}\Big (\frac{i-m}{2} \Big )\ \text { and }\ {\tilde{v}}^i_{(m)}\in {\mathfrak {g}}\Big (\frac{m-i}{2} \Big ). \end{aligned}$$
(A.2)

1.1 A.1. Proof of Proposition 5.1

1.1.1 A.1.1. Proof of (1) in Proposition 5.1

For such a purpose, let us compute \([\omega (\bar{{\tilde{f}}}){}_\Lambda \omega (\bar{{\tilde{f}}})]\).

Lemma A1

For \(a=b= {\tilde{f}}\in {\mathfrak {g}}^{f}_{-1/2}\), the only nontrivial terms in (4.12) are \( -\omega (\overline{[a,b]})\) and

$$\begin{aligned} - \big (k(b|v_{1}^{(0)})(D+\chi ) \big )\big (k({\tilde{v}}^{1}_{(1)}|v_{1}^{(1)})(D+\chi ) \big )\big (k({\tilde{v}}^{1}_{(2)}|a)(D+\chi ) \big )=2k^3\lambda \chi . \end{aligned}$$
(A.3)

Proof

Let us show the only nonzero terms in \([\omega (\bar{a}){}_\Lambda \omega (\bar{b})]+\omega (\overline{[a,b]})\) are given by (A.3. By relation (4.12), we have \(v_{i_0}^{(m_0)}\in {\mathfrak {g}}(j)\) for \(j=-1, -\frac{1}{2}, 0, \frac{1}{2}.\)

  1. (i)

    Let \(v_{i_0}^{(m_0)}\in {\mathfrak {g}}(-1)\). Then \((b|v_{i_0}^{(m_0)})=0\). Since \([b,v_{i_0}^{(m_0)}]\in {\mathfrak {g}}(-\frac{3}{2})\), then \([b,v_{i_0}^{(m_0)}]^\sharp \ne 0\) implies \([{\tilde{f}},v_{i_0}^{(m_0)}] \in {\mathbb {C}}v_3^0\) (see Lemma 2.3). This in turn shows that \({\tilde{v}}^{i_t}_{(m_t+1)} \in \bigoplus _{j\ge \frac{3}{2}}{\mathfrak {g}}(j)\) for \(t\in {\mathbb {Z}}_{+}\), so that \(({\tilde{v}}^{i_t}_{(m_t+1)}| a)=0\). From \({\mathfrak {g}}^{f}\cap {\mathfrak {n}}=\emptyset \), we also have \([{\tilde{v}}^{i_t}_{(m_t+1)}, a]^\sharp =0\). Hence \(v_{i_0}^{(m_0)}\in {\mathfrak {g}}(-1)\) cannot give rise to nonzero terms.

  2. (ii)

    Let \(v_{i_0}^{(m_0)}\in {\mathfrak {g}}(-\frac{1}{2})\). Then \((b|v_{i_0}^{(m_0)})=0\) and \([b,v_{i_0}^{(m_0)}]^\sharp \ne 0\) implies \(v_{i_0}^{(m_0)} \in {\mathbb {C}}{\tilde{f}}\). However, if \(v_{i_0}^{(m_0)} \in {\mathbb {C}}{\tilde{f}}\) then \({\tilde{v}}^{i_0}_{(m_0+1)}=0\). Hence we cannot get any nonzero terms.

  3. (iii)

    Let \(v_{i_0}^{(m_0)}\in {\mathfrak {g}}(0)\). Then \((b|v_{i_0}^{(m_0)})=0\) and \([b,v_{i_0}^{(m_0)}]^\sharp \ne 0\) implies \(v_{i_0}^{(m_0)} \in {\mathbb {C}}H\) and \(v^{i_0}_{(m_0+1)} \in {\mathbb {C}}e\). In this case, \([{\tilde{v}}^{i_0}_{(m_0+1)}, g]^\sharp =0\) for any \(g\in {\mathfrak {g}}\), since \([e,{\mathfrak {g}}] \oplus {\mathfrak {g}}^f=0\).

  4. (vi)

    Let \(v_{i_0}^{(m_0)}\in {\mathfrak {g}}(\frac{1}{2})\). The only nonzero term arises only when \(v_{i_0}^{(m_0)}\in {\mathbb {C}}{\tilde{e}}\) and \(v_{i_1}^{(m_1)}\in {\mathbb {C}}U\). In this case we get relation (A.3.

\(\square \)

By Lemma A1, we have \( \{\omega (\bar{{\tilde{f}}}{})_\Lambda \omega (\bar{{\tilde{f}}})\}=-2\omega (\bar{F})+2k^3 \lambda \chi \). Hence we proved Proposition 5.1 (1).

1.1.2 A.1.2 Additionnal lemmas

To prove Proposition 5.1 (2), let us introduce some more lemmas. We remind that \({{\mathcal {I}}}= \{ 1,2,\ldots , 2n+1\}\) and \({{\mathcal {J}}}= \{ (i,m)| i\in {{\mathcal {I}}}, \ m=0,1,\ldots , d_i\}\).

Lemma A2

Let \(i, j \in {{\mathcal {I}}}\) and \((j,t)\in {{\mathcal {J}}}\). Then

  1. (1)

    \([{\tilde{v}}^i_{(2i)}, v_j^{(t)}]^\sharp =0\) for \(t \le 2j-1\),

  2. (2)

    \([{\tilde{v}}^i_{(2i-1)}, v_j^{(t)}]^\sharp =0\) for \(t \le 2j-2\).

Proof

For (1), observe that \(v_j^{(t)}\) for \(t \le 2j-1\) is in \([e,{\mathfrak {g}}]\). Let \(u_j^{(t+1)} \in {\mathfrak {g}}\) satisfy \([e,u_j^{(t+1)}]= v_j^{(t)}\). Since \({\tilde{v}}_{(2i)}^i \in {\mathfrak {g}}^e\), we have \( [e,[u_j^{(t+1)}, {\tilde{v}}_{(2i)}^i]]= [v_j^{(t)},{\tilde{v}}_{(2i)}^i ] \in [e,{\mathfrak {g}}]. \) Hence, from \([e,{\mathfrak {g}}]\cap {\mathfrak {g}}^f=\emptyset \), we proved (1).

For (2), let \(t \le 2j-2\). Observe there are \({u'}_j^{(t+2)} \in {\mathfrak {g}}\) and \({\tilde{u}}_{(2i)}^i \in {\mathfrak {g}}^e\) such that \(v_j^{(t)}=[E, {u'}_j^{(t+2)}]\) and \({\tilde{v}}^i_{(2i-1)}=[f, {\tilde{u}}_{(2i)}^i]\). Now we have \( [{\tilde{v}}^i_{(2i-1)}, v_j^{(t)}]^\sharp = [E,[[f,{\tilde{u}}_{(2i)}^i], \)\( {u'}_j^{(t+2)}]]^\sharp + [[[f,{\tilde{u}}_{(2i)}^i], E],{u'}_j^{(t+2)}]^\sharp .\) Since \([[f,{\tilde{u}}_{(2i)}^i],E]=0\) and \([E,[[f,{\tilde{u}}_{(2i)}^i],{u'}_j^{(t+2)}]]^\sharp =0\), we conclude \([{\tilde{v}}^i_{(2i-1)}, \) \( v_j^{(t)}]^\sharp =0\). \(\square \)

Now, we can list nonzero terms in relation (4.12) when \(b={\tilde{f}}\) or F. To lighten the notations, let us denote

$$\begin{aligned} {\widetilde{\omega }}(\overline{[x,y]}):= \omega (\overline{[x,y]}^\sharp )-k(x|y)(\chi +D). \end{aligned}$$
(A.4)

Lemma A3

Let \(b=F\). For \(a= {\tilde{f}}\), the bracket \([\omega (b){}_{\Lambda }\omega (a)]\) can be computed similarly to what has been done for (A.17). If \(a=F\), the only nonzero terms in (4.12) can be listed as follows:

$$\begin{aligned} \begin{aligned}&{\widetilde{\omega }}(\overline{[b,v_1^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(1)},v^{(1)}_1]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(2)},a]})= \frac{1}{2}k \, \omega (\bar{{\tilde{f}}}) (\chi +D)\omega (\bar{{\tilde{f}}}),\\&{\widetilde{\omega }}(\overline{[b,v_1^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(1)},v^{(3)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(4)},a]})= -\frac{1}{4} k \, \omega (\bar{{\tilde{f}}})^2 \chi ,\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(1)}_1]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(2)},a]})=-\frac{1}{4}k(\chi +D)\omega (\bar{{\tilde{f}}})^2,\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(1)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(2)},v^{(2)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(3)},v^{(3)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(4)},a]})= \frac{1}{2}k^5\, (\lambda +\partial )^2(\chi +D),\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(1)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(2)},a]})= k^2(\lambda +\partial )\omega (\bar{F}),\\&{\widetilde{\omega }}(\overline{[b,v^{(2)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(3)},v^{(3)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(4)},a]})= k^2 \omega (\bar{F})\lambda ,\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(3)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(4)},a]})=\frac{1}{2}k^2 \, (\chi +D)\omega (\bar{F})\chi .\\ \end{aligned}\nonumber \\ \end{aligned}$$
(A.5)

Proof

Use Lemma A2 and track all the nonzero terms as in the proof of Lemma A1. Essentially, the computations done for relation (4.16) work. \(\square \)

By Eq. (A.17), and adding the contributions in relation (A.5), we get

$$\begin{aligned} \begin{aligned}&\{ G{}_\Lambda \omega ({\tilde{f}}) \}= (2\partial + \chi D + 2\lambda ) \omega ({\tilde{f}})\\&\{ G{}_\Lambda G\} = (2\partial + \chi D + 3\lambda ) G -2k \lambda ^2\chi \end{aligned} \end{aligned}$$
(A.6)

for \(G:= -\frac{2}{k^2}\omega (\bar{F})\). Hence \(\omega ({\tilde{f}})\) is G-primary of conformal weight 1.

Lemma A4

Let \(i\ge 3\) be an integer. Then

  1. (1)

    \( [ {\tilde{e}}, v_{2j}^{(4j)}]=2j \, v^{(4j-2)}_{2j-1}, \)

  2. (2)

    \( [ {\tilde{e}}, v_{2j-1}^{(4j-2)}]=-(2j-1) v^{(4j-2)}_{2j}. \)

Proof

We know \([ {\tilde{e}}, v_{2j}^{(4j)}]= c\, v_{2j-1}^{(4j-2)}\) for a constant \(c\in {\mathbb {C}}\). Since \([{\tilde{f}},[{\tilde{e}}, v_{2j}^{(4j)}]]=-[2H, v_{2j}^{(4j)}]= 2j \, v_{2j}^{(4j)}\) and \([{\tilde{f}},[{\tilde{e}}, v_{2j}^{(4j)}]]= c\,[{\tilde{f}}, v_{2j-1}^{(4j-2)}]= c\, v_{2j}^{(4j)}\), Hence \(c=2j\) and (1) follows.

The proof for (2) is analogous to the one for (1) once one uses equation (A.1). \(\square \)

Lemma A5

Suppose \((j,m)\in {\mathcal {J}}\). Then the following properties hold.

  1. (1)

    If \({\widetilde{w}}(\overline{[F,v_j^{(m)}]})\ne 0 \), then \((j,m)= (2,0)\) or \((j, 2j-2)\).

  2. (2)

    If \({\widetilde{w}}(\overline{[{\tilde{v}}^2_{(1)},v_j^{(m)}]})\ne 0 \), then \((j,m)=(j,2j-1)\) or \((j,m)=(2,1)\).

  3. (3)

    If \({\widetilde{w}}(\overline{[{\tilde{v}}^i_{(2i-1)},v_j^{(m)}]})\ne 0 \) for \(i\in {\mathcal {I}}\), then

    $$\begin{aligned}(j,m)\in \{ (i',2i'-1), (i'',2i'') \in {\mathcal {J}} | i'\ge i, i''>i\}. \end{aligned}$$
  4. (4)

    If \({\widetilde{w}}(\overline{[{\tilde{v}}^i_{(2i)},v_j^{(m)}]})\ne 0 \) for \(i\in {\mathcal {I}}\), Then

    $$\begin{aligned} (j,m)\in \{ (i',2i') \in {\mathcal {J}} | i'\ge i\}. \end{aligned}$$
  5. (5)

    Let \((i_0, m_0), (i_1, m_2), \ldots (i_p,m_p) \in {\mathcal {J}}\) and \(a,b\in {\mathfrak {g}}^f\). If

    $$\begin{aligned} {\widetilde{w}}(\overline{[b,v_{i_0}^{(m_0)}]}) {\widetilde{w}}(\overline{[{\tilde{v}}^{i_0}_{(m_0+1)},v_{i_1}^{(m_1)}]}) \ldots {\widetilde{w}}(\overline{[{\tilde{v}}^{i_p}_{(m_p+1)},a]})\ne 0, \end{aligned}$$

    then \(m_t <2 i_t\) for \(t=0,1,\ldots , p\).

Proof

(1), (2) directly follow from the \(\mathfrak {osp}(1|2)\) representation theory and the fact that for \((i,m), (i',m')\in {\mathcal {J}}\) we have \(({\tilde{v}}^i_{(m)}|v_{i'}^{(m')})\ne 0\) iff \(i=i'\) and \(m=m'\). (5) holds since if \(m_t\ge 2i_t\) then \({\tilde{v}}^{i_t}_{(m_t+1)}=0\). For (3), Lemma A2 shows \({\widetilde{w}}(\overline{[{\tilde{v}}^i_{(2i-1)},v_j^{(m)}]})\ne 0 \) only when \(m=2j-1\) or 2j. Now, since \({\mathfrak {g}}^f \subset \bigoplus _{t<0} {\mathfrak {g}}(t)\), we need \(j\ge i\). In addition, we have \({\widetilde{w}}(\overline{[{\tilde{v}}^i_{(2i-1)},v_i^{(2i)}]})=0\) since \([{\tilde{v}}^i_{(2i-1)},v_i^{(2i)}]^\sharp = (v_1^{(0)}|[{\tilde{v}}^i_{(2i-1)},v_i^{(2i)}]){\tilde{v}}^1_{(0)}\) and \((v_1^{(0)}|[{\tilde{v}}^i_{(2i-1)},v_i^{(2i)}])=(-1)^{i+1}({\tilde{v}}^i_{(2i-1)}|[{\tilde{e}},v_i^{(2i)}])=0\) by Lemma A4. (4) is proved similarly. \(\square \)

Lemma A6

Suppose \( n,i\ge 2\) are integers and \(i\le n\). Take \(a=v^{(4i-2)}_{2i-1}\) and \(b=F=-\frac{1}{2}\,v_2^{(4)}\) in \({\mathfrak {g}}={{\mathfrak {s}}}{{\mathfrak {l}}}(n+1|n)\). We restrict ourselves to the terms in (4.12) such that

$$\begin{aligned} i_0, i_1, \ldots , i_p\in \{1,2,2i-1, 2i\}. \end{aligned}$$
(A.7)

Then, the only possibly nonzero terms in (4.12) satisfying (A.7) are listed below:

$$\begin{aligned} \begin{aligned}&{\widetilde{\omega }}(\overline{[b,v^{(0)}_2]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(1)}_2]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(2)},a]})= \frac{2i-1}{2} k^2 \,(\lambda +\partial )\, \omega (\bar{v}_{2i-1}^{(4i-2)}),\\&{\widetilde{\omega }}(\overline{[b,v^{(0)}_2]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(4i-3)}_{2i-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i-1}_{(4i-2)},a]})=\frac{k^2}{2}(-\lambda +\chi D)\, \omega (\bar{v}_{2i-1}^{(4i-2)}),\\&{\widetilde{\omega }}(\overline{[b,v^{(4i-4)}_{2i-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i-1}_{(4i-3)},v^{(4i-3)}_{2i-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i-1}_{(4i-2)},a]})=k^2\, \omega (\bar{v}_{2i-1}^{(4i-2)}) \lambda . \end{aligned} \end{aligned}$$
(A.8)

Proof

Using Lemma A5, one shows that the only non-zero terms in (4.12) are given by (A.8). For instance, one can show that there is no nonzero term starting with \({\widetilde{\omega }}(\overline{[b,v^{(2)}_2]})\) in the following way. Since \([{\tilde{v}}^2_{(3)}, {\mathfrak {g}}]\oplus {\mathfrak {g}}^f={\mathfrak {g}}\), we have \({\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(3)},v_i^{(m)}]}) \ne 0\) iff \((i,m)=(2,3).\) Now, take \((i,m)=(2,3)\) and consider \((i',m')\) such that \({\widetilde{\omega }}(\overline{[{\tilde{v}}^i_{(m+1)},v_{i'}^{(m')}]})\ne 0\). Then \((i',m')\) should be (2, 4). Finally, Lemma A5 (5) tells that there is no nonzero term starting with \({\widetilde{\omega }}(\overline{[b,v^{(2)}_2]})\). Furthermore, the equalities in (A.8) are obtained by direct computations. \(\square \)

Lemma A7

Suppose \(n,i\ge 2\) are integers and \(i\le n\). Take \(a=v^{(4i)}_{2i}\) and \(b=F=-\frac{1}{2}\,v_2^{(4)}\) in \({\mathfrak {g}}={{\mathfrak {s}}}{{\mathfrak {l}}}(n+1|n)\). The only possibly nonzero terms in (4.12) satisfying (A.7) are listed below:

$$\begin{aligned} \begin{aligned}&{\widetilde{\omega }}(\overline{[b,v_1^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(1)},v^{(1)}_1]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(2)},a]})=-ik\, \omega (\bar{v}_1^{(2)})(\chi +D) \omega (\bar{v}_{2i-1}^{(4i-2)}),\\&{\widetilde{\omega }}(\overline{[b,v_1^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(1)},v^{(4i-1)}_{2i}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i}_{(4i)},a]})= \frac{1}{2}k\,\omega (\bar{v}_1^{(2)})\omega (\bar{v}_{2i-1}^{(4i-2)}) \chi ,\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(1)}_1]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^1_{(2)},a]})=\frac{i}{2}k\, (\chi +D)\omega (\bar{v}_1^{(2)})\omega (\bar{v}_{2i-1}^{(4i-2)}),\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(4i-3)}_{2i-1}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i-1}_{(4i-2)},a]})= \frac{i}{2} k\, (\chi +D)\omega (\bar{v}_{2i-1}^{(4i-2)}) \omega (\bar{v}_1^{(2)}),\\&{\widetilde{\omega }}(\overline{[b,v^{(4i{-}4)}_{2i{-}1}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i-1}_{(4i-3)},v^{(4i-3)}_{2i-1}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i-1}_{(4i-2)},a]}){=}{-}ik\, \omega (\bar{v}_{2i-1}^{(4i-2)}) (\chi {+}D) \omega (\bar{v}_1^{(2)}),\\&{\widetilde{\omega }}(\overline{[b,v^{(4i-4)}_{2i-1}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i-1}_{(4i-3)},v^{(4i-1)}_{2i}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i}_{(4i)},a]})=\frac{2i-1}{2}k \, \omega (\bar{v}_{2i-1}^{(4i-2)}) \omega (\bar{v}_1^{(2)})\chi ,\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(1)}_2]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(2)},a]})=i k^2 \, (\lambda +\partial ) \omega (\bar{v}^{(4i)}_{2i}),\\&{\widetilde{\omega }}(\overline{[b,v_2^{(0)}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^2_{(1)},v^{(4i-1)}_{2i}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i}_{(4i)},a]})= -\frac{k^2}{2}(\lambda -\chi D) \omega (\bar{v}_{2i}^{(4i)}),\\&{\widetilde{\omega }}(\overline{[b,v^{(4i-2)}_{2i}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i}_{(4i-1)},v^{(4i-1)}_{2i}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i}_{(4i)},a]})=k^2 \, \omega (\bar{v}^{(4i)}_{2i})\lambda .\\ \end{aligned}\nonumber \\ \end{aligned}$$
(A.9)

Proof

The proof of the lemma is similar to the one of Lemma A6. We use Lemma A5 and check the equalities by computations. \(\square \)

Corollary A8

We have

$$\begin{aligned} \begin{aligned}&[\omega (\bar{v}^{(6)}_{3}){}_\Lambda \omega (\bar{F})]= k^2 \bigg ( 2\lambda + \frac{1}{2}\chi D + \frac{3}{2}\partial \bigg )\omega (\bar{v}^{(6)}_{3}),\\&[\omega (\bar{v}^{(8)}_{4}){}_\Lambda \omega (\bar{F})]= -k^2 \bigg ( \frac{5}{2}\lambda + \frac{1}{2}\chi D + 2\partial \bigg )\omega (\bar{v}^{(8)}_{4}). \end{aligned} \end{aligned}$$
(A.10)

Hence for \(n=2\), \(G= -\frac{2}{k^2}\omega (\bar{F})\) is a superconformal vector of \({\mathcal {W}}^k({\overline{{{\mathfrak {s}}}{{\mathfrak {l}}}}}(3|2), f)\). Furthermore, when \(n\ge 2\), the two elements \(\omega (\bar{v}^{(6)}_{3})\) and \(\omega (\bar{v}^{(8)}_{4})\) are G-primary of conformal weight 2 and \(\frac{5}{2}\) respectively.

Proof

For the case \({\mathfrak {g}}= {{\mathfrak {s}}}{{\mathfrak {l}}}(3|2)\), \(i=2\) is the only possibility and (A.7) does not bring any further constrain. Hence it suffices to consider Lemmas A6 and A7. \(\square \)

In order to compute \([\omega (\bar{v}^{(2i)}_{i}){}_\Lambda \omega (\bar{F})]\) for \(i\ge 5,\) we have to find all nontrivial terms in relation (4.12) when \(b=F\) and \(a= \bar{v}^{(2i)}_{i}\) (see Lemmas A12 and A13). We first use the following lemma and corollaries (see Lemma A9, Corollaries A10 and A11).

Lemma A9

Let \(j\in {\mathbb {Z}}_{+}\) be an integer such that \(j\le n\). We have the following properties:

  1. (1)

    \(v_j^{(2j-1)} = \frac{1}{j}[e,v_j^{(2j)}]\),

  2. (2)

    \({\tilde{v}}_{(2j-1)}^j = (-1)^j[f,{\tilde{v}}^j_{(2j)}]\),

  3. (3)

    \([{\tilde{v}}_{(2j-1)}^{j}, v_{k}^{(2k-1)}]^\sharp = \frac{-j}{k}[{\tilde{v}}^{j}_{(2j)},v_{k}^{(2k)}]^\sharp \).

Proof

(1) Let \(x_j\) be the constant such that \(v_j^{(2j-1)}=x_j\,[e,v_j^{(2j)}]\). Then \(v_j^{(2j)}=[f,v_j^{(2j-1)}]= x_j\, [f,[e,v_j^{(2j)}]]=x_j\,[-2H, v_j^{(2j)}]= x_j\, j \, v_j^{(2j)}\). Hence \(x_j= \frac{1}{j}.\)

(2) Let \(y_j\) be the constant such that \({\tilde{v}}_{(2j-1)}^j = y_j\, [f,{\tilde{v}}^j_{(2j)}]\). By (1), we have \( (v_j^{(2j-1)}|{\tilde{v}}^j_{(2j-1)}) \)\(= \frac{y_j}{j}\big ( [e,v_j^{(2j)}]| [f,{\tilde{v}}^j_{(2j)}] \big )=1.\) Since

$$\begin{aligned} \frac{y_j}{j}\big ( [e,v_j^{(2j)}]| [f,{\tilde{v}}^j_{(2j)}] \big )= (-1)^j\frac{y_j}{j}([e,f]|[v_j^{(2j)}, {\tilde{v}}^j_{(2j)}])=(-1)^j y_j (v_j^{(2j)}|{\tilde{v}}^j_{(2j)})=1, \end{aligned}$$

we have \(y_j=(-1)^j\).

(3) Using the above relations (1), (2) and the Jacobi identity, we have

$$\begin{aligned} \begin{aligned}&[{\tilde{v}}^{j}_{(2j-1)}, v_k^{(2k-1)}]^\sharp \\&\quad = (-1)^j \frac{1}{k}[[f,{\tilde{v}}^j_{(2j)}],[e,v_k^{(2k)}]]^\sharp = (-1)^j \frac{1}{k}[[[f,{\tilde{v}}^j_{(2j)}], e], v_k^{(2k)}]^\sharp \\&\quad =(-1)^j \frac{1}{k} [[(-1)^{j+1}2H,{\tilde{v}}^j_{(2j)}], v_k^{(2k)}]^\sharp =-\frac{j}{k}[{\tilde{v}}^{j}_{(2j)}, v_k^{(2k)}]^\sharp . \end{aligned} \end{aligned}$$
(A.11)

Here, the second equality in (A.11) holds since \([e,{\mathfrak {g}}]\) and \({\mathfrak {g}}^f\) intersect trivially. \(\square \)

Corollary A10

Let \(i,j\in {\mathcal {I}}\) and \(j>i\). Then

$$\begin{aligned}^\sharp =-\frac{i}{j}[{\tilde{v}}_{(2i)}^{i}, v_{j}^{(2j)}]^\sharp =0\end{aligned}$$

when i and j have the same parity or j is odd.

Proof

We have \([{\tilde{v}}_{(2i)}^{i}, v_{j}^{(2j)}]^\sharp = (-1)^{j-i} ({\tilde{v}}^{j-i}_{(2j-2i)}|[{\tilde{v}}_{(2i)}^{i}, v_{j}^{(2j)}])v_{j-i}^{(2j-2i)}\). Since \([{\tilde{v}}^{j-i}_{(2j-2i)}, {\tilde{v}}_{(2i)}^{i}]=0\) if i or \(j-i\) is even, the second equality follows. The first equality follows from Lemma A9. \(\square \)

Combining the result of Lemma A5 and Corollary A10, we can narrow down the number of terms in (4.12).

Corollary A11

Let \(b= F\) and \(a= v_{i}^{(2i)}\in {\mathfrak {g}}\) for \(i\ge 5\). The longest nonzero terms in (4.12) have one of the following forms:

$$\begin{aligned}&{\widetilde{w}}(\overline{[b,v_j^{(2j-2)}]}) {\widetilde{w}}(\overline{[{\tilde{v}}^j_{(2j-1)},v_l^{(2l-1)}]}){\widetilde{w}}(\overline{[{\tilde{v}}^l_{(2l)},a]}) , \end{aligned}$$
(A.12)
$$\begin{aligned}&{\widetilde{w}}(\overline{[b,v_2^{(0)}]}) {\widetilde{w}}(\overline{[{\tilde{v}}_{(1)}^2,v_l^{(2l-1)}]}){\widetilde{w}}(\overline{[{\tilde{v}}^l_{(2l)},a]}). \end{aligned}$$
(A.13)

Moreover, (A.12\(\ne 0\) only if \(i,j,l \in {\mathcal {I}})\) obey one of the three following constraints:

  • \(i=l\) is even and j is odd such that \(j\le l\),

  • i is even and \(j=l\) is odd such that \(j=l<i\),

  • \(j=l=i\),

and \((A.13) = -\frac{1}{2} k(\chi +D)\omega (\bar{v}_l^{(2\,l)}) {\widetilde{\omega }}(\overline{[{\tilde{v}}_{(2\,l)}^l, v_i^{(2i)}]})\ne 0\) only if

  • \(i=l\),

  • i is even and l is odd such that \(l<i\).

Lemma A12

Suppose \(n\ge 3\) and \(2<i\le n\). For \(b=F\) and \(a=v^{(4i-2)}_{2i-1}\), the followings are all nontrivial terms in (4.12):

  1. (1)

    terms in relation (A.8);

  2. (2)

    for j such that \(1<j< i\),

    $$\begin{aligned}&{\widetilde{\omega }}(\overline{[b,v^{(4j-2)}_{2j}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j}_{(4j-1)},a]}) \nonumber \\ {}&\quad =-w(\bar{v}_{2j}^{(4j)}) \omega (\overline{[{\tilde{v}}_{(4j-1)}^{2j}, a]}^\sharp ) =\omega (\bar{v}_{2i-2j}^{(4i-4j)})\, \omega (\overline{[{\tilde{v}}_{(4i-4j-1)}^{2i-2j}, a]}^\sharp ); \end{aligned}$$
    (A.14)
    $$\begin{aligned}&{\widetilde{\omega }}(\overline{[b,v^{(4j-4)}_{2j-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j-1}_{(4j-3)},a]}) \nonumber \\ {}&\quad =-\omega (\bar{v}_{2j-1}^{(4j-2)})\, \omega (\overline{[{\tilde{v}}^{2j-1}_{(4j-3)}, a]}^\sharp ) =\omega (\bar{v}_{2i-2j+1}^{(4i-4j+2)}) \,\omega (\overline{[{\tilde{v}}^{2i-2j+1}_{(4i-4j+1)}, a]}^\sharp ). \end{aligned}$$
    (A.15)

Proof

By Lemma A5 and Corollary A11, we can find all possible nonzero terms. For equalities (A.14), we use Lemma A9 (2). Since

$$\begin{aligned}{}[{\tilde{v}}_{(4j-1)}^{2j}, a]^\sharp = ([[f,{\tilde{v}}^{2j}_{(4j)}], a]|{\tilde{v}}^{2i-2j}_{(4i-4j)})\,v_{2i-2j}^{(4i-4j)} =({\tilde{v}}^{2j}_{(4j)}| [{\tilde{v}}^{2i-2j}_{(4i-4j-1)}, a])\,v_{2i-2j}^{(4i-4j)}, \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned} \omega (\bar{v}_{2j}^{(4j)})\, \omega (\overline{[{\tilde{v}}_{(4j-1)}^{2j}, a]}^\sharp )&= ({\tilde{v}}^{2j}_{(4j)}| [{\tilde{v}}^{2i-2j}_{(4i-4j-1)}, a])\,\omega (\bar{v}_{2j}^{(4j)})\, \omega (\bar{v}_{2i-2j}^{(4i-4j)})\\&= - \omega (\bar{v}_{2i-2j}^{(4i-4j)})\, \omega (\overline{[{\tilde{v}}_{(4i-4j-1)}^{2i-2j}, a]}^\sharp ). \end{aligned} \end{aligned}$$

The same proof works for equality (A.15). Hence the lemma follows. \(\square \)

Lemma A13

Suppose \(n\ge 4\) and \(2<i\le n\). For \(b=F\) and \(a=v^{(4i)}_{2i}\), the followings are all nontrivial terms in (4.12):

  1. (1)

    terms in relation (A.9);

  2. (2)

    for j such that \(1<j<i\), we have the five following possibilities:

    $$\begin{aligned}{} & {} {\widetilde{\omega }}(\overline{[b,v^{(4j-4)}_{2j-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j-1}_{(4j-3)},v^{(4i-1)}_{2i}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2i}_{(4i)},a]})\nonumber \\{} & {} \qquad \qquad \qquad \qquad = - \frac{2j-1}{2i}k\, \omega (\bar{v}_{2j-1}^{(4j-2)})\,\omega (\overline{[{\tilde{v}}^{2j-1}_{(4j-2)}, v_{2i}^{(4i)}]}^{\sharp })\chi ,\nonumber \\{} & {} {\widetilde{\omega }}(\overline{[b,v^{(4j-4)}_{2j-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j-1}_{(4j-3)},v^{(4j-3)}_{2j-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j-1}_{(4j-2)},a]})\nonumber \\{} & {} \quad \qquad \qquad \qquad =k\, \omega (\bar{v}_{2j-1}^{(4j-2)})(\chi +D)\omega (\overline{[{\tilde{v}}^{2j-1}_{(4j-2)},v_{2i}^{(4i)}]}^{\sharp }),\nonumber \\{} & {} {\widetilde{\omega }}(\overline{[b,v^{(1)}_{2}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2}_{(1)},v^{(4j-3)}_{2j-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j-1}_{(4j-2)},a]})\nonumber \\ {}{} & {} \qquad \qquad \qquad \quad =-\frac{1}{2}k\, (\chi +D)\omega (\bar{v}_{2j-1}^{(4j-2)})\omega (\overline{[{\tilde{v}}^{2j-1}_{(4j-2)},v_{2i}^{(4i)}]}^{\sharp }); \end{aligned}$$
    (A.16)
    $$\begin{aligned}{} & {} {\widetilde{\omega }}(\overline{[b,v^{(4j-4)}_{2j-1}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j-1}_{(4j-3)},a]}) =-\omega (\bar{v}^{(4j-2)}_{2j-1})\,\omega (\overline{[{\tilde{v}}^{2j-1}_{(4j-3)},a]}^\sharp )\nonumber \\{} & {} \qquad \qquad \qquad =\omega (\bar{v}^{(4i-4j+4)}_{2i-2j+2})\,\omega (\overline{[{\tilde{v}}^{2i-2j+2}_{(4i-4j+3)},a]}^\sharp ), \end{aligned}$$
    (A.17)
    $$\begin{aligned}{} & {} {\widetilde{\omega }}(\overline{[b,v^{(4j-2)}_{2j}]})\,{\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j}_{(4j-1)},a]}) =-\omega (\bar{v}^{(4j)}_{2j})\,\omega (\overline{[{\tilde{v}}^{2j}_{(4j-1)},a]}^\sharp )\nonumber \\{} & {} \qquad \qquad \qquad = \omega (\bar{v}^{(4i-4j+2)}_{2i-2j+1})\,\omega (\overline{[{\tilde{v}}^{2i-2j+1}_{(4i-4j+1)},a]}^\sharp ). \end{aligned}$$
    (A.18)

Proof

Again, by Lemma A5 and Corollary A11, we can find all possible nonzero terms. Equalities (A.17) and (A.18) can be proved similarly to the proof of (A.14). The equalities in (A.16) are obtained by direct computations using Lemma A9 (3). \(\square \)

1.1.3 A.1.3 Proof of (2) in Proposition 5.1

When \(n=2\), the proof is done in Corollary A.10. Let us assume \(n\ge 3\). For the cases, Proposition 5.1 (2) is proved by the following lemmas.

Lemma A14

For any \(i\in {\mathcal {I}}\), we have

$$\begin{aligned}{}[\omega (\bar{v}^{(4i-2)}_{2i-1}){}_\Lambda \omega (\bar{F})]= k^2 \bigg ( i\lambda + \frac{1}{2}\chi D + \frac{2i-1}{2}\partial \bigg )\omega (\bar{v}^{(4i-2)}_{2i-1}). \end{aligned}$$

Proof

Recall Lemmas A3, A6 and A12. Denote \(b=F\) and \(a=v_{2i-1}^{(4i-2)}\) as in Lemma A12. It is enough to show that \(\sum _{j=2}^{i-1}(A.14)-1(2) + \sum _{j=2}^{i-1}(A.15)=0\) for all \(i\ge 5\). Indeed, we have

$$\begin{aligned}{} & {} \ 2 \ \sum _{j=2}^{i-1}{\widetilde{\omega }}(\overline{[b,v^{(4j-2)}_{2j}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j}_{(4j-1)}, a]}) \nonumber \\{} & {} \quad = \sum _{j=2}^{i-1} \bigg ( -w(\bar{v}_{2j}^{(4j)})\, \omega (\overline{[{\tilde{v}}_{(4j-1)}^{2j}, a]}^\sharp )+ \omega (\bar{v}_{2i-2j}^{(4i-4j)})\, \omega (\overline{[{\tilde{v}}_{(4i-4j-1)}^{2i-2j}, a]}^\sharp ) \bigg )\nonumber \\{} & {} \quad = - w(\bar{v}_{2i-2}^{(4i-4)})\, \omega (\overline{[{\tilde{v}}_{(4i-5)}^{2i-2}, a]}^\sharp ) + \omega (\bar{v}_{2}^{(4)})\, \omega (\overline{[{\tilde{v}}_{(3)}^{2}, a]}^\sharp ) \end{aligned}$$
(A.19)

and \([{\tilde{v}}_{(4i-5)}^{2i-2}, a]^\sharp =[{\tilde{v}}_{(3)}^{2}, a]^\sharp =0\). Hence \(\sum _{j=2}^{i-1}(A.14)-1(2)=0\). Similarly, we also have \(\sum _{j=2}^{i-1}(A.15)=0\). \(\square \)

Lemma A15

For any \(i\in {\mathcal {I}}\), we have

$$\begin{aligned}{}[\omega (\bar{v}^{(4i)}_{2i}){}_\Lambda \omega (\bar{F})]= -k^2 \bigg ( \frac{2i+1}{2}\lambda + \frac{1}{2}\chi D + i\partial \bigg )\omega (\bar{v}^{(4i)}_{2i}). \end{aligned}$$

Proof

We aim to show \(\sum _{j=2}^{i-1}(A.16)=0\) and \(\sum _{j=2}^{i-1}(A.17)+(A.18)=0\). The first assertion follows from the fact that

$$\begin{aligned} \omega (\bar{v}_{2j-1}^{(4j-2)})\,\omega (\overline{[{\tilde{v}}^{2j-1}_{(4j-2)},v_{2i}^{(4i)}]}^{\sharp })= \omega (\bar{v}_{2i-2j+1}^{(4i-4j+2)})\,\omega (\overline{[{\tilde{v}}^{2i-2j+1}_{(4i-4j+2)},v_{2i}^{(4i)}]}^{\sharp }), \end{aligned}$$

which can be deduced by a computation similar to the proof of (A.14). For the second assertion, we use equalities in (A.17) and (A.18). More precisely, observe that

$$\begin{aligned}{} & {} \sum _{j=2}^{i-1}{\widetilde{\omega }}(\overline{[b,v^{(4j-2)}_{2j}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j}_{(4j-1)},v_{2i}^{(4i)}]})+ \sum _{j=2}^{i-1}{\widetilde{\omega }}(\overline{[b,v^{(4j-4)}_{2j-1}]}){\widetilde{\omega }}(\overline{[{\tilde{v}}^{2j-1}_{(4j-3)},v_{2i}^{(4i)}]})\nonumber \\{} & {} \quad = -\sum _{l=3}^{2i-2}\omega (\bar{v}^{(2l)}_{l})\,\omega (\overline{[{\tilde{v}}^{l}_{(2l-1)},a]}^\sharp )= \sum _{l=3}^{2i-2}\omega (\bar{v}^{(2l)}_{l})\,\omega (\overline{[{\tilde{v}}^{l}_{(2l-1)},a]}^\sharp ). \end{aligned}$$
(A.20)

Here, the first equality in (A.20) corresponds to the first equality in the formulas (A.17) and (A.18). The second equality in (A.20) corresponds to the second equality of formulas (A.17) and (A.18). Hence \((A.20)=0\). \(\square \)

1.2 A.2 Proof of Theorem 5.2

We use Theorem 3.10 to prove Theorem 5.2.

Take \({\mathcal {C}}=\{v_i^{(2i)}, v_i^{(2i-1)}\,|\,i=1, \ldots 2n\}\) for \(\{v_i^{(m)}\,|\,(i,m)\in {{\mathcal {J}}}\}\) as in section 6. Let us denote \( J=\frac{\sqrt{-1}}{k}\omega (\bar{{\tilde{f}}})\) and recall that \(G= -\frac{2}{k^2} \omega (\bar{F})\) is a \(N=1\) superconformal vector. Then \(\{ J {}_\Lambda J \}= -G+ 2k^2 \lambda \chi \) and hence \(-J_{(0|0)}J=G\).

In order to prove that J is a \(N=2\) superconformal vector and that all the elements of \({W}_{\mathfrak {osp}(1|2)}^{N=2}\) are J-primary, it is enough to show that \(\{J {}_\Lambda \omega (\bar{v}^{(4i-2)}_{2i-1})\}= J_{(0|0)}\omega (\bar{v}^{(4i-2)}_{2i-1})\) for \(i=2,3,\ldots , n\) and that \({\mathcal {W}}^k({\bar{{\mathfrak {g}}}},f)\) is freely generated by \(\{\omega (\bar{v}^{(4i-2)}_{2i-1}), J_{(0|0)}\omega (\bar{v}^{(4i-2)}_{2i-1})|i=2,3,\ldots , n\}\cup \{J,G\}\) as a \({\mathbb {C}}[\nabla ]\)-algebra.

Lemma A16

For \(i=2, \ldots , n\), we have

$$\begin{aligned} \{ \omega (\bar{{\tilde{f}}}){}_\Lambda \omega (\bar{v}^{(4i-2)}_{2i-1})\}= -\omega (\bar{v}^{(4i)}_{2i})+ \sum _{j=2}^{i-1} c_{j,i} \omega (\bar{v}^{(4j)}_{2j}) \omega (\bar{v}^{(4i-4j)}_{2i-2j}), \end{aligned}$$

for some constants \(c_{j,i} \in {\mathbb {C}}\).

Proof

Using relation (4.12) and Lemma A2, we have

$$\begin{aligned} \begin{aligned} \{ \omega (\bar{v}^{(4i-2)}_{2i-1}) {}_\Lambda \omega (\bar{{\tilde{f}}})\}&= -\omega (\bar{v}^{(4i)}_{2i})+\sum _{j=2}^{i-1} \omega (\overline{[{\tilde{f}}, v_{2j}^{(4j-2)}]})\omega (\overline{[{\tilde{v}}_{(4j-1)}^{2j}, v^{(4i-2)}_{2i-1}]^\sharp })\\&=-\omega (\bar{v}_{2i}^{(4i)})- \sum _{j=2}^{i-1}\omega (\bar{v}^{(4j)}_{2j}) \big ({\tilde{v}}^{2i-2j}_{(4i-4j)}| [{\tilde{v}}^{2j}_{(4i-1)}, v^{(4i-2)}_{2i-1}] \big )v^{(4i-4j)}_{2i-2j}. \end{aligned} \end{aligned}$$
(A.21)

We let \(c_{j,i}=-\big ({\tilde{v}}^{2i-2j}_{(4i-4j)}| [{\tilde{v}}^{2j}_{(4j)}, v^{(4i-2)}_{2i-1}] \big )\) and get the lemma by skewsymmetry. \(\square \)

By Lemma A16, we conclude that J is a \(N=2\) superconformal vector. Moreover, the set \(W_{\mathfrak {osp}(1|2)}^{N=2}=\{\omega (\bar{v}^{(4i-2)}_{2i-1})|i=2,3,\ldots , n\}\) satisfies the second statement of Theorem 5.2.

1.3 A.3 Proof of Theorem 5.5

We use Theorems 3.9 and 3.10 to prove Theorem 5.5.

Lemma A17

The following relations hold:

$$\begin{aligned} \begin{aligned}&\{ \nu (f){}_\lambda \nu (f)\}= -2\nu (F)+\frac{1}{2}(\nu (U))^2-k^2 \lambda ^2, \\&\{ \nu ({\tilde{f}}){}_\lambda \nu ({\tilde{f}})\}= 2\nu (F)-\frac{1}{2}(\nu (U))^2+k^2 \lambda ^2. \end{aligned} \end{aligned}$$
(A.22)

Hence if we consider \(G= \sqrt{-\frac{1}{k}}\nu (f)\) or \(\sqrt{\frac{1}{k}}\nu ({\tilde{f}})\) then \(G_{(0)}G= \frac{2}{k}\left( \nu (F)-\frac{1}{4}(\nu (U))^2\right) \), and G is a conformal vector of \({\mathcal {W}}^k({\mathfrak {g}}, F)\).

Proof

Applying Theorem 4.7, we get the relations (A.22). By Theorem 4.8, the last assertion directly follows from equations (A.22). \(\square \)

Let \(G= \sqrt{-\frac{1}{k}}\nu (f)\) and \(L:=G_{(0)}G= \frac{2}{k}(\nu (F)-\frac{1}{4}(\nu (U))^2)\). Then, for \(s=2i,2i-1\) and \(i\ne 2\), the elements \(\nu (v_i^{(s)})\) in \(W_{{{\mathfrak {s}}}{{\mathfrak {l}}}_2}^{N=0}\) and G are L-primary by Theorem 4.8. We also have \(\{G_\lambda \nu (v_{i}^{(2i-1)})\}= G_{(0)} \nu (v_{i}^{(2i-1)})\) for \(i\ne 2\) since

$$\begin{aligned} \{\nu (f){}_\lambda \nu (v_{i}^{(2i-1)})\}= \nu (v^{(2i)}_{i})-\sum _{j=2}^{i-1}(-1)^{j}\nu ([f, v_{j}^{(2j-2)}])\nu ([{\tilde{v}}^{j}_{(2j)}, v_{i}^{(2i-1)}]^{\natural }),\nonumber \\ \end{aligned}$$
(A.23)

and thus \(\{G, L\}\cup \{\nu (v_{i}^{(2i-1)}), G_{(0)}\nu (v_{i}^{(2i-1)})|i=1,3,4,\ldots , 2n \}\) freely generates \({\mathcal {W}}^k({\mathfrak {g}},F)\) as a \({\mathbb {C}}[\partial ]\)-algebra. For \(D:=G_{(0)}\), by Lemma A17 and Theorem 3.9, we conclude that (i) the element G is a \(N=1\) superconformal vector, (ii) \(\nu (v_{i}^{(2i-1)})\) for \(i\ne 2\) is G-primary, (iii) the set \(\{\nu (v_{i}^{(2i-1)})|i=1,2,\ldots , 2n\}\) freely generates \({\mathcal {W}}^k({\mathfrak {g}},F)\) as a \({\mathbb {C}}[\nabla ]\)-algebra.

Similarly, we can show \({\tilde{G}}=\sqrt{\frac{1}{k}}\nu ({\tilde{f}})\) is another \(N=1\) superconformal vector. Since

$$\begin{aligned} \{\nu ({\tilde{f}})_\lambda \nu (v^{(4i'-2)}_{2i'-1})\}= \nu (v^{(4i')}_{2i'}),\quad \{\nu ({\tilde{f}})_\lambda \nu (v_{2i-1}^{(4i-3)})\}= {}-\nu (v_{2i}^{(4i-1)}), \end{aligned}$$
(A.24)

for \(i=1,2, \ldots , n\) and \(i'=2,3, \ldots ,n\), the set

$$\begin{aligned} \{{\tilde{G}}, L\}\cup \{\nu (v^{(4i'-2)}_{2i'-1}), {\tilde{G}}_{(0)}\nu (v^{(4i'-3)}_{2i'-1})\}_{i'=2}^n \cup \{\nu (v_{2i-1}^{(4i-3)}), {\tilde{G}}_{(0)}\nu (v_{2i-1}^{(4i-3)})\}_{i=1}^n\end{aligned}$$

freely generates \({\mathcal {W}}^k({\mathfrak {g}},F)\) as a \({\mathbb {C}}[\partial ]\)-algebra. If we denote \({\tilde{D}}:={\tilde{G}}_{(0)}\) then (i) \({\tilde{G}}\) is a \(N=1\) superconformal vector (ii) \(\nu (v^{(4i'-2)}_{2i'-1})\) and \(\nu (v_{2i-1}^{(4i-3)})\) are \({\tilde{G}}\)-primary (iii) \(\{{\tilde{G}}\}\cup \{\nu (v^{(4i'-2)}_{2i'-1}), \nu (v_{2i-1}^{(4i-3)})|i'=2,3, \ldots , n \text { and } \, i=1,2,\ldots , n \}\) freely generates \({\mathcal {W}}^k({\mathfrak {g}}, F)\) as a \({\mathbb {C}}[{\tilde{\nabla }}]\)-algebra.

In the rest of this section, we show that \(J:=-\sqrt{-1}\,\nu (U)\) is a \(N=2\) superconformal vector of \({\mathcal {W}}^k({\mathfrak {g}},F)\). Let us first show that the odd derivations D and \({\tilde{D}}\) give rise to \(N=2\) SUSY structure on \({\mathcal {W}}^k({\mathfrak {g}},F)\). Observe that

$$\begin{aligned} \begin{aligned}&DJ= \sqrt{-\frac{1}{k}}\nu (f)_{(0)}\,J=\sqrt{\frac{1}{k}}\nu ({\tilde{f}})={\tilde{G}}, \\&{\tilde{D}}J= \sqrt{\frac{1}{k}}\nu ({\tilde{f}})_{(0)}\, J=-\sqrt{-\frac{1}{k}}\nu (f)=-G. \end{aligned} \end{aligned}$$

Now, using relations (A.23) and (A.24), we get

$$\begin{aligned} \begin{aligned}&\big \{DJ{}_\lambda \nu (v_{2i-1}^{(4i-3)})\big \}= \sqrt{\frac{1}{k}}\nu ({\tilde{f}})_{(0)}\nu (v_{2i-1}^{(4i-3)})={\tilde{D}}\,\nu (v_{2i-1}^{(4i-3)}),\\&\big \{{\tilde{D}}J{}_\lambda \nu (v_{2i-1}^{(4i-3)})\big \}=-\sqrt{-\frac{1}{k}}\nu (v_{2i-1}^{(4i-3)})=-D\, \nu (v_{2i-1}^{(4i-3)}).\\ \end{aligned} \end{aligned}$$
(A.25)

and

$$\begin{aligned} D{\tilde{D}}J= G_{(0)}(-G)=\sqrt{-\frac{1}{k}} \nu (f)_{(0)}\bigg (-\sqrt{\frac{-1}{k}}\nu (f)\bigg )=-L. \end{aligned}$$
(A.26)

We can also check \(\{J{}_\lambda J\}=2k\lambda \) and \(\big \{J{}_\lambda \nu (v_{2i-1}^{(4i-3)})\big \}=0\). Therefore, from Theorem 3.12, we deduce that J is a \(N=2\) superconformal vector and \(\nu (v_{2i-1}^{(4i-3)})\) for \(i=2,\ldots , n\) are J-primary. Moreover, relations (A.23) and (A.24) show that \(\{J\}\cup \{\nu (v_{2i-1}^{(4i-3)})|i=2,\ldots , n\}\) freely generates \({\mathcal {W}}^k({\mathfrak {g}},F)\) as a \({\mathbb {C}}[{\varvec{\nabla }}]\)-algebra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragoucy, E., Song, A. & Suh, U.R. \(N\,\text {=}\,2\) Supersymmetric Structures on Classical W-algebras. Commun. Math. Phys. 404, 1607–1640 (2023). https://doi.org/10.1007/s00220-023-04865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04865-9

Navigation