Skip to main content
Log in

Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider random normal matrix and planar symplectic ensembles, which can be interpreted as two-dimensional Coulomb gases having determinantal and Pfaffian structures, respectively. For a class of radially symmetric potentials with soft edges, we derive the asymptotic expansions of the log-partition functions up to and including the O(1)-terms as the number N of particles increases. Notably, our findings stress that the formulas of the \(O(\log N)\)- and O(1)-terms in these expansions depend on the connectivity of the droplet. For random normal matrix ensembles, our formulas agree with the predictions proposed by Zabrodin and Wiegmann up to an additive constant depending on N but not on the background potential. For planar symplectic ensembles, the expansions contain a new kind of ingredient in the O(N)-terms, the logarithmic potential evaluated at the origin in addition to the entropy of the ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility statement

There is no data associated to this work.

Notes

  1. We mention that the physical entropy is \(-\int _{\mathbb {C}} \log (\Delta Q/\pi ) \, d\mu _{Q}\).

References

  1. Adhikari, K.: Hole probabilities for \(\beta \)-ensembles and determinantal point processes in the complex plane. Electron. J. Probab. 23, 1–21 (2018)

    MathSciNet  Google Scholar 

  2. Adhikari, K., Reddy, N.K.: Hole probabilities for finite and infinite Ginibre ensembles. Int. Math. Res. Not. 12, 694–6730 (2016)

    Google Scholar 

  3. Akemann, G.: The complex Laguerre symplectic ensemble of non-Hermitian matrices. Nuclear Phys. B 730(3), 253–299 (2005)

    MATH  ADS  MathSciNet  Google Scholar 

  4. Akemann, G., Byun, S.-S., Ebke, M.: Universality of the number variance in rotational invariant two-dimensional Coulomb gases. J. Stat. Phys. 190(9), 1–34 (2023)

    MATH  ADS  MathSciNet  Google Scholar 

  5. Akemann, G., Byun, S.-S., Kang, N.-G.: A non-Hermitian generalisation of the Marchenko–Pastur distribution: from the circular law to multi-criticality. Ann. Henri Poincaré 22(4), 1035–1068 (2021)

    MATH  ADS  MathSciNet  Google Scholar 

  6. Akemann, G., Byun, S.-S., Kang, N.-G.: Scaling limits of planar symplectic ensembles. SIGMA Symmet. Integrabil. Geom. Methods Appl. 18, 40 (2022)

    MATH  MathSciNet  Google Scholar 

  7. Akemann, G., Ebke, M., Parra, I.: Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels. Commun. Math. Phys. 389(1), 621–659 (2022)

    MATH  ADS  MathSciNet  Google Scholar 

  8. Akemann, G., Phillips, M., Shifrin, L.: Gap probabilities in non-Hermitian random matrix theory. J. Math. Phys. 50(6), 063504 (2009)

    MATH  ADS  MathSciNet  Google Scholar 

  9. Ameur, Y., Charlier, C., Cronvall, J.: The two-dimensional Coulomb gas: fluctuations through a spectral gap (2022). Preprint arXiv:2210.13959

  10. Ameur, Y., Charlier, C., Cronvall, J., Lenells, J.: Disk counting statistics near hard edges of random normal matrices: the multi-component regime (2022). Preprint arXiv:2210.13962

  11. Ameur, Y., Charlier, C., Cronvall, J., Lenells, J.: Exponential moments for disk counting statistics at the hard edge of random normal matrices (2022). Preprint arXiv:2207.11092

  12. Ameur, Y., Kang, N.-G., Seo, S.-M.: The random normal matrix model: insertion of a point charge. Potential Anal. (online) (2021)

  13. Balogh, F., Merzi, D.: Equilibrium measures for a class of potentials with discrete rotational symmetries. Constr. Approx. 42(3), 399–424 (2015)

    MATH  MathSciNet  Google Scholar 

  14. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. Adv. Theor. Math. Phys. 23, 841–1002 (2019)

    MATH  MathSciNet  Google Scholar 

  15. Benaych-Georges, F., Chapon, F.: Random right eigenvalues of Gaussian quaternionic matrices. Random Matrices Theory Appl. 1(2), 1150009 (2012)

    MATH  MathSciNet  Google Scholar 

  16. Byun, S.-S.: Planar equilibrium measure problem in the quadratic fields with a point charge (2023). Preprint arXiv:2301.00324

  17. Byun, S.-S., Charlier, C.: On the characteristic polynomial of the eigenvalue moduli of random normal matrices (2022). Preprint arXiv:2205.04298

  18. Byun, S.-S., Charlier, C.: On the almost-circular symplectic induced Ginibre ensemble. Stud. Appl. Math. 150, 184–217 (2023)

    MathSciNet  Google Scholar 

  19. Byun, S.-S., Forrester, P.J.: Progress on the study of the Ginibre ensembles I: GinUE (2022). Preprint arXiv:2211.16223

  20. Byun, S.-S., Forrester, P.J.: Spherical induced ensembles with symplectic symmetry (2022). Preprint arXiv:2209.01934

  21. Byun, S.-S., Forrester, P.J.: Progress on the study of the Ginibre ensembles II: GinOE and GinSE (2023). Preprint arXiv:2301.05022

  22. Byun, S.-S., Yang, M.: Determinantal Coulomb gas ensembles with a class of discrete rotational symmetric potentials (2022). Preprint arXiv:2210.04019

  23. Can, T., Forrester, P., Téllez, G., Wiegmann, P.: Exact and asymptotic features of the edge density profile for the one component plasma in two dimensions. J. Stat. Phys. 158(5), 1147–1180 (2015)

    MATH  ADS  MathSciNet  Google Scholar 

  24. Chafaï, D., Gozlan, N., Zitt, P.-A.: First-order global asymptotics for confined particles with singular pair repulsion. Ann. Appl. Probab. 24(6), 2371–2413 (2014)

    MATH  MathSciNet  Google Scholar 

  25. Charles, L., Estienne, B.: Entanglement entropy and Berezin–Toeplitz operators. Commun. Math. Phys. 376(1), 521–554 (2020)

    MATH  ADS  MathSciNet  Google Scholar 

  26. Charlier, C.: Asymptotics of Hankel determinants with a one-cut regular potential and Fisher–Hartwig singularities. Int. Math. Res. Not. IMRN 24, 7515–7576 (2019)

    MATH  MathSciNet  Google Scholar 

  27. Charlier, C.: Large gap asymptotics on annuli in the random normal matrix model (2021). Preprint arXiv:2110.06908

  28. Charlier, C.: Asymptotics of determinants with a rotation-invariant weight and discontinuities along circles. Adv. Math. 408, 108600 (2022)

    MATH  MathSciNet  Google Scholar 

  29. Charlier, C., Gharakhloo, R.: Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher–Hartwig singularities. Adv. Math. 383, 107672 (2021)

    MATH  MathSciNet  Google Scholar 

  30. Charlier, C., Lenells, J.: Exponential moments for disk counting statistics of random normal matrices in the critical regime (2022). Preprint arXiv:2205.00721

  31. Charlier, C., Lenells, J., Mauersberger, J.: Higher order large gap asymptotics at the hard edge for Muttalib–Borodin ensembles. Commun. Math. Phys. 384(2), 829–907 (2021)

    MATH  ADS  MathSciNet  Google Scholar 

  32. Criado del Rey, J.G., Kuijlaars, A.B.: A vector equilibrium problem for symmetrically located point charges on a sphere. Constr. Approx. 1–53 (2022)

  33. Deaño, A., Simm, N.: Characteristic polynomials of complex random matrices and Painlevé transcendents. Int. Math. Res. Not. 22, 210–264 (2022)

    MATH  Google Scholar 

  34. Dubach, G.: On eigenvector statistics in the spherical and truncated unitary ensembles. Electron. J. Probab. 26, 1–29 (2021)

    MATH  MathSciNet  Google Scholar 

  35. Fenzl, M., Lambert, G.: Precise deviations for disk counting statistics of invariant determinantal processes. Int. Math. Res. Not. 2022(10), 7420–7494 (2022)

    MATH  MathSciNet  Google Scholar 

  36. Fischmann, J., Forrester, P.J.: One-component plasma on a spherical annulus and a random matrix ensemble. J. Stat. Mech. Theory Exp. 2011(10), P10003 (2011)

    Google Scholar 

  37. Forrester, P.J.: Some statistical properties of the eigenvalues of complex random matrices. Phys. Lett. A 169(1–2), 21–24 (1992)

    ADS  MathSciNet  Google Scholar 

  38. Forrester, P.J.: Log-Gases and Random Matrices (LMS-34). Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  39. Forrester, P.J.: Analogies between random matrix ensembles and the one-component plasma in two-dimensions. Nucl. Phys. B 904, 253–281 (2016)

    MATH  ADS  MathSciNet  Google Scholar 

  40. Garnett, J.B., Marshall, D.E.: Harmonic Measure, vol. 2. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  41. Ghosh, S., Nishry, A.: Point processes, hole events, and large deviations: random complex zeros and Coulomb gases. Constr. Approx. 48(1), 101–136 (2018)

    MATH  MathSciNet  Google Scholar 

  42. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6(3), 440–449 (1965)

    MATH  ADS  MathSciNet  Google Scholar 

  43. Guionnet, A., Krishnapur, M., Zeitouni, O.: The single ring theorem. Ann. Math. 174(2), 1189–1217 (2011)

    MATH  MathSciNet  Google Scholar 

  44. Hedenmalm, H., Makarov, N.: Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. 106(4), 859–907 (2013)

    MATH  MathSciNet  Google Scholar 

  45. Hedenmalm, H., Wennman, A.: Planar orthogogonal polynomials and boundary universality in the random normal matrix model. Acta Math. 227(2), 309–406 (2021)

    MATH  MathSciNet  Google Scholar 

  46. Jancovici, B., Lebowitz, J.L., Manificat, G.: Large charge fluctuations in classical Coulomb systems. J. Stat. Phys. 72(3), 773–787 (1993)

    MATH  ADS  MathSciNet  Google Scholar 

  47. Jancovici, B., Manificat, G., Pisani, C.: Coulomb systems seen as critical systems: finite-size effects in two dimensions. J. Stat. Phys. 76(1), 307–329 (1994)

    MATH  ADS  Google Scholar 

  48. Kanzieper, E.: Eigenvalue correlations in non-Hermitean symplectic random matrices. J. Phys. A 35(31), 6631–6644 (2002)

    MATH  ADS  MathSciNet  Google Scholar 

  49. Khoruzhenko, B.A., Lysychkin, S.: Truncations of random symplectic unitary matrices (2021). Preprint arXiv:2111.02381

  50. Kiessling, M.K.-H., Spohn, H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199(3), 683–695 (1999)

    MATH  ADS  MathSciNet  Google Scholar 

  51. Lacroix-A-Chez-Toine, B., Garzón, J.A.M., Calva, C.S.H., Castillo, I.P., Kundu, A., Majumdar, S.N., Schehr, G.: Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble. Phys. Rev. E 100(1), 012137 (2019)

    ADS  Google Scholar 

  52. Lacroix-A-Chez-Toine, B., Majumdar, S.N., Schehr, G.: Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: exact results for the entanglement entropy and number variance. Phys. Rev. A 99(2), 021602 (2019)

    ADS  Google Scholar 

  53. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of log and Riesz gases. Invent. Math. 210(3), 645–757 (2017)

    MATH  ADS  MathSciNet  Google Scholar 

  54. Leblé, T., Serfaty, S.: Fluctuations of two dimensional coulomb gases. Geom. Funct. Anal. 28(2), 443–508 (2018)

    MATH  MathSciNet  Google Scholar 

  55. Lee, S.-Y., Makarov, N.G.: Topology of quadrature domains. J. Am. Math. Soc. 29(2), 333–369 (2016)

    MATH  MathSciNet  Google Scholar 

  56. Lewin, M.: Coulomb and Riesz gases: the known and the unknown. J. Math. Phys. 63(6), 061101 (2022)

    MATH  ADS  MathSciNet  Google Scholar 

  57. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  58. Saff, E.B., Totik, V.: Logarithmic potentials with external fields, volume 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1997). [Appendix B by Thomas Bloom]

  59. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)

    MATH  MathSciNet  Google Scholar 

  60. Serebryakov, A., Simm, N.: Characteristic polynomials of random truncations: moments, duality and asymptotics. Random Matrices Theory Appl. (2022). [With an appendix by G. Dubach]

  61. Serfaty, S.: Microscopic description of Log and Coulomb gases. In Random matrices, volume 26 of IAS/Park City Mathematics Series, pp. 341–387. Amer. Math. Soc., Providence (2019)

  62. Serfaty, S.: Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature. Annales Institute Henri Poincaré Probabilities Statistiques (to appear) (2020). arXiv:2003.11704

  63. Shakirov, S.: Exact solution for mean energy of 2d Dyson gas at \(\beta = 1\). Phys. Lett. A 375(6), 984–989 (2011)

    MATH  ADS  MathSciNet  Google Scholar 

  64. Smith, N.R., Doussal, P.L., Majumdar, S.N., Schehr, G.: Counting statistics for non-interacting fermions in a rotating trap. Phys. Rev. A 105, 043315 (2022)

    ADS  Google Scholar 

  65. Téllez, G., Forrester, P.J.: Exact finite-size study of the 2D OCP at \(\Gamma = 4\) and \(\Gamma = 6\). J. Stat. Phys. 97(3), 489–521 (1999)

    MATH  ADS  MathSciNet  Google Scholar 

  66. Webb, C., Wong, M.D.: On the moments of the characteristic polynomial of a Ginibre random matrix. Proc. Lond. Math. Soc. 118(5), 1017–1056 (2019)

    MATH  MathSciNet  Google Scholar 

  67. Zabrodin, A., Wiegmann, P.: Large-\(N\) expansion for the 2D Dyson gas. J. Phys. A 39(28), 8933–8963 (2006)

    MATH  ADS  MathSciNet  Google Scholar 

  68. Życzkowski, K., Sommers, H.-J.: Truncations of random unitary matrices. J. Phys. A 33(10), 2045–2057 (2000)

    MATH  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Gernot Akemann, Christophe Charlier, Peter Forrester and Thomas Leblé for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Soo Byun.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Communicated by L. Erdos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sung-Soo Byun and Nam-Gyu Kang were partially supported by Samsung Science and Technology Foundation (SSTF-BA1401-51) and by the National Research Foundation of Korea (NRF-2019R1A5A1028324). Sung-Soo Byun was partially supported by a KIAS Individual Grant (SP083201) via the Center for Mathematical Challenges at Korea Institute for Advanced Study. Nam-Gyu Kang was partially supported by a KIAS Individual Grant (MG058103) at Korea Institute for Advanced Study. Seong-Mi Seo was partially supported by the National Research Foundation of Korea (NRF-2019R1A5A1028324, NRF-2022R1I1A1A01072052).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Kang, NG. & Seo, SM. Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials. Commun. Math. Phys. 401, 1627–1663 (2023). https://doi.org/10.1007/s00220-023-04673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04673-1

Navigation