Skip to main content
Log in

Mysterious Triality and Rational Homotopy Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Mysterious Duality has been discovered by Iqbal, Neitzke, and Vafa (Adv Theor Math Phys 5:769–808, 2002) as a convincing, yet mysterious correspondence between certain symmetry patterns in toroidal compactifications of M-theory and del Pezzo surfaces, both governed by the root system series \(E_k\). It turns out that the sequence of del Pezzo surfaces is not the only sequence of objects in mathematics that gives rise to the same \(E_k\) symmetry pattern. We present a sequence of topological spaces, starting with the four-sphere \(S^4\), and then forming its iterated cyclic loop spaces \(\mathscr {L}_c^k S^4\), within which we discover the \(E_k\) symmetry pattern via rational homotopy theory. For this sequence of spaces, the correspondence between its \(E_k\) symmetry pattern and that of toroidal compactifications of M-theory is no longer a mystery, as each space \(\mathscr {L}_c^k S^4\) is naturally related to the compactification of M-theory on the k-torus via identification of the equations of motion of \((11-k)\)-dimensional supergravity as the defining equations of the Sullivan minimal model of \(\mathscr {L}_c^k S^4\). This gives an explicit duality between algebraic topology and physics. Thereby, we extend Iqbal-Neitzke-Vafa’s Mysterious Duality between algebraic geometry and physics into a triality, also involving algebraic topology. Via this triality, duality between physics and mathematics is demystified, and the mystery is transferred to the mathematical realm as duality between algebraic geometry and algebraic topology. Now the question is: Is there an explicit relation between the del Pezzo surfaces \(\mathbb {B}_k\) and iterated cyclic loop spaces of \(S^4\) which would explain the common \(E_k\) symmetry pattern?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. We clarify that, by a little abuse of terminology, we will often say “rational” even when one should more correctly say “real.” However, it will always be clear from the context what field of coefficients we is working with.

  2. We will use lowercase letters for universal elements and uppercase letters to denote spacetime fields.

  3. Here we abandon the traditional notion of minimality, based on a free graded Lie algebra, in favor of a more modern one: Q(Z) is an \(L_\infty \)-algebra with the zero differential, see [BFMT20]. The differential d on M(Z) may be identified as the Chevalley-Eilenberg differential, but this is beside the point here.

  4. Vigué-Poirrier and Burghelea assume that Z is simply connected, but their argument applies to the more general nilpotent case verbatim, by taking V[1] to be the truncated desuspension (14) of V, given that Halperin’s theorem on fibrations [Hal83, Theorem 20.3] is done in the nilpotent case.

  5. We will have multiple circle fiber directions and corresponding labels on the contractions \(s_i\) and the classes of the circles \(w_i\). We realize that the notation is not fully in parallel with the convention of using such labels to indicate the degree, but choosing another notation such as \(s_{(i)}\) might overload the expressions when multiple such occur below. We hope the distinction will be clear from the context.

  6. True/genuine \(E_k\) for \(k =6, 7\), and 8, and using the conventions of Table 1 for \(0 \le k \le 5\).

References

  1. Albers, P., Frauenfelder, U., Oancea, A.: Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity. Math. Ann. 367, 1403–1428 (2017). https://doi.org/10.1007/s00208-016-1401-6. arXiv:1509.02455

  2. Awada, M., Townsend, P.K.: \(d = 8\) Maxwell-Einstein supergravity. Phys. Lett. B 156, 51–54 (1985). https://doi.org/10.1016/0370-2693(85)91353-X

    Article  ADS  MathSciNet  Google Scholar 

  3. Bandos, I., Berkovits, N., Sorokin, D.: Duality-symmetric elevendimensional supergravity and its coupling to M-branes. Nucl. Phys. B 522, 214–233 (1998). https://doi.org/10.1016/S0550-3213(98)00102-3arXiv:hep-th/9711055

  4. Bandos, I.A., Nurmagambetov, A.J., Sorokin, D.: Various faces of type IIA supergravity. Nucl. Phys. B 676, 189–228 (2004). https://doi.org/10.1016/j.nuclphysb.2003.10.036.arXiv:hep-th/0307153

  5. Beauville, A.: Complex Algebraic Surfaces, Cambridge University Press, (1996) (online 2010), [ISBN:9780511623936]

  6. Berdnikov, A., Manin, F.: Scalable spaces. Invent. Math. 229, 1055–1100 (2022). https://doi.org/10.1007/s00222-022-01118-9. arXiv:1912.00590

  7. Bergshoeff, E., Hull, C., Ortin, T.: Duality in the type-II superstring effective action. Nucl. Phys. B 451, 547–578 (1995). https://doi.org/10.1016/0550-3213(95)00367-2. arXiv:hep-th/9504081

  8. Borel, A.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 126, 2nd edn. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-0941-6

  9. Bousfield, A.K., Gugenheim, V.K.A.M.: On \({\rm PL}\) de Rham theory and rational homotopy type. Mem. Am. Math. Soc. 8(179), 85 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Braunack-Mayer, V., Sati, H., Schreiber, U.: Gauge enhancement of super M-branes via parametrized stable homotopy theory. Commun. Math. Phys. 71, 197–265 (2019). https://doi.org/10.1007/s00220-019-03441-4. arXiv:1806.01115

  11. Brown, E.H., Jr., Szczarba, R.H.: Real and Rational Homotopy Theory, Handbook of Algebraic Topology, pp. 867–915. North-Holland, Amsterdam (1995). https://doi.org/10.1016/B978-044481779-2/50018-3

  12. Buijs, U., Félix, Y., Murillo, A., Tanré, D.: Lie Models in Topology, Progress in Mathematics, vol. 335. Birkhäuser, Cham (2020). https://doi.org/10.1007/978-3-030-54430-0

  13. Campbell, C., West, P.: \(N = 2\)\(D = 10\) non-chiral supergravity and its spontaneous compactification. Nucl. Phys. B 243, 112–124 (1984). https://doi.org/10.1016/0550-3213(84)90388-2

    Article  ADS  Google Scholar 

  14. Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings, A Geometric Perspective, vol. 1–3. , Singapore (1991). https://doi.org/10.1142/0224

  15. Cremmer, E., Julia, B., Scherk, J.: Supergravity in theory in 11 dimensions. Phys. Lett. 76B, 409–412 (1978). https://doi.org/10.1016/0370-2693(78)90894-8

    Article  ADS  MATH  Google Scholar 

  16. Cremmer, E., Julia, B., Lu, H., Pope, C.N.: Dualisation of dualities I. Nucl. Phys. B 523, 73–144 (1998). https://doi.org/10.1016/S0550-3213(98)00136-9. arXiv:hep-th/9710119

  17. Cremmer, E., Julia, B., Lu, H., Pope, C.N.: Dualisation of dualities II: twisted self-duality of doubled fields and superdualities. Nucl. Phys. B 535, 242–292 (1998). https://doi.org/10.1016/S0550-3213(98)00552-5. arXiv:hepth/9806106

  18. Cremmer, E., Lu, H., Pope, C.N., Stelle, K.S.: Spectrum-generating symmetries for BPS solitons. Nucl. Phys. B 520, 132–156 (1998). https://doi.org/10.1016/S0550-3213(98)00057-1. arXiv:hep-th/9707207

  19. Dall’Agata, G., Lechner, K., Sorokin, D.P.: Covariant actions for the bosonic sector of d = 10 IIB supergravity. Class. Quant. Grav. 14, L195–L198 (1997). https://doi.org/10.1088/0264-9381/14/12/003. arXiv:hep-th/9707044

  20. Dall’Agata, G., Lechner, K., Tonin, M.: D = 10, N = IIB supergravity: Lorentz invariant actions and duality. J. High Energy Phys. 9807, 017 (1998). https://doi.org/10.1088/1126-6708/1998/07/017. arXiv:hep-th/9806140

  21. Das, A., Roy, S.: On M-theory and the symmetries of type II string effective actions. Nucl. Phys. B 482, 119–141 (1996). https://doi.org/10.1016/S0550-3213(96)00530-5. arXiv:hep-th/9605073

  22. Demazure, M.: Surfaces de del Pezzo, I, II, III, IV, V, M. Demazure, H. Pinkham, and B. Teissier (eds.), Séminaire sur les Singularités des Surfaces, Lecture Notes in Mathematics, vol. 777, pp. 21–69, Springer, Berlin (1980) https://doi.org/10.1007/BFb0085872

  23. Le Diffon, A., Samtleben, H.: Supergravities without an action: gauging the trombone. Nucl. Phys. B 811, 1–35 (2009). https://doi.org/10.1016/j.nuclphysb.2008.11.010. arXiv:0809.5180

  24. Dolgachev, I.: Reflection groups in algebraic geometry. Bull. Am. Math. Soc. (N.S.) 45, 1–60 (2008). https://doi.org/10.1090/S0273-0979-07-01190-1. arXiv:math/0610938

  25. Dolgachev, I.: Classical Algebraic Geometry, A Modern View. Cambridge University Press, Cambridge (2012). ([ISBN:978-1-107-01765-8])

  26. Dolgachev, I.: Automorphisms of Coble surfaces, Conference in memory of V. A. Iskovskikh, Steklov Mathematical Institute (2020). http://www.mi-ras.ru/~prokhoro/conf/isk20/Dolgachev.pdf

  27. Félix, Y., Halperin, S.: Rational homotopy theory via Sullivan models: a survey. ICCM Not. 5(2), 14–36 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Félix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory. Springer, New York (2001). ([ISBN:978-0-387-95068-6])

  29. Félix, Y., Oprea, J., Tanré, D.: Algebraic Models in Geometry. Oxford University Press, Oxford (2008). ([ISBN:9780199206520])

  30. Fiorenza, D., Sati, H., Schreiber, U.: The WZW term of the M5-brane and differential cohomotopy. J. Math. Phys. 56, 102301 (2015). https://doi.org/10.1063/1.4932618. arXiv:1506.07557

  31. Fiorenza, D., Sati, H., Schreiber, U.: Rational sphere valued supercocycles in M-theory and type IIA string theory. J. Geom. Phys. 114, 91–108 (2017). https://doi.org/10.1016/j.geomphys.2016.11.024.arXiv:1606.03206

  32. Fiorenza, D., Sati, H., Schreiber, U.: T-Duality from super Lie \(n\)-algebra cocycles for super p-branes. Adv. Theor. Math. Phys. 22, 1209–1270 (2018). https://doi.org/10.4310/ATMP.2018.v22.n5.a3. arXiv:1611.06536

  33. Fiorenza, D., Sati, H., Schreiber, U.: T-duality in rational homotopy theory via \(L_\infty \)-algebras, Geometry, Topology and Math. Phys. J. 1 (2018); special volume in tribute of Jim Stasheff and Dennis Sullivan, arXiv:1712.00758

  34. Fiorenza, D., Sati, H., Schreiber, U.: The rational higher structure of M-theory, Proc. LMS-EPSRC Durham Symposium Higher Structures in M-Theory, Aug. 2018, Fortsch. Phys. 67 (2019), 1910017, https://doi.org/10.1002/prop.201910017, arXiv:1903.02834

  35. Fiorenza, D., Sati, H., Schreiber, U.: Twisted Cohomotopy implies M-theory anomaly cancellation on 8-manifolds. Commun. Math. Phys. 377, 1961–2025 (2020). https://doi.org/10.1007/s00220-020-03707-2. arXiv:1904.10207

  36. Fiorenza, D., Sati, H., Schreiber, U.: Twisted Cohomotopy implies level quantization of the full 6d Wess-Zumino term of the M5-brane. Commun. Math. Phys. 384, 403–432 (2021). https://doi.org/10.1007/s00220-021-03951-0arXiv:1906.07417

  37. Fiorenza, D., Sati, H., Schreiber, U.: The character map in (twisted differential) non-abelian cohomology, arXiv:2009.11909

  38. Giani, F., Pernici, M.: \(N = 2\) supergravity in ten dimensions. Phys. Rev. D 30, 325–333 (1984). https://doi.org/10.1103/PhysRevD.30.325

    Article  ADS  MathSciNet  Google Scholar 

  39. Grady, D., Sati, H.: Differential cohomotopy versus differential cohomology for M-theory and differential lifts of Postnikov towers. J. Geom. Phys. 165, 104203 (2021). https://doi.org/10.1016/j.geomphys.2021.104203. arXiv:2001.07640

  40. Griffiths, P., Morgan, J.: Rational Homotopy Theory and Differential Forms, Progress in Mathematics, vol. 16. Birkhäuser, London (2013). https://doi.org/10.1007/978-1-4614-8468-4

  41. Hall, B.: Lie groups, Lie algebras, and representations. An elementary introduction. 2nd edn, Graduate Texts in Mathematics, vol. 222, Springer, Cham, (2015), [ISBN:978-3-319-13466-6]

  42. Halperin, S.: Lectures on minimal models. Mém. Soc. Math. France (N.S.) 9–10, 261 (1983)

  43. Henry-Labordere, P., Julia, B., Paulot, L.: Borcherds symmetries in M theory. J. High Energy Phys. 0204, 049 (2002). https://doi.org/10.1088/1126-6708/2002/04/049. arXiv:hep-th/0203070

  44. Henry-Labordere, P., Julia, B., Paulot, L.: Real Borcherds superalgebras and M-theory. J. High Energy Phys. 0304, 060 (2003). https://doi.org/10.1088/1126-6708/2003/04/060. arXiv:hep-th/0212346

  45. Howe, P., West, P.: The Complete \(N = 2\)\(D = 10\) supergravity. Nucl. Phys. B 238, 181–220 (1984). https://doi.org/10.1016/0550-3213(84)90472-3

    Article  ADS  MathSciNet  Google Scholar 

  46. Hull, C.M., Townsend, P.K.: Unity of superstring dualities. Nucl. Phys. B 438, 109–137 (1995). https://doi.org/10.1016/0550-3213(94)00559-W. arXiv:hep-th/9410167

  47. Huq, M., Namazie, M.: Kaluza-Klein supergravity in ten dimensions. Class. Quant. Grav. 2, 293–308 (1985). https://doi.org/10.1088/0264-9381/2/3/007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Iqbal, A., Neitzke, A., Vafa, C.: A mysterious duality. Adv. Theor. Math. Phys. 5, 769–808 (2002). https://doi.org/10.4310/ATMP.2001.v5.n4.a5. arXiv:hep-th/0111068

  49. Julia, B.: Three lectures in Kac-Moody algebras and supergravities. Front. Particle Phys. 83, 132–151 (2020)

    Google Scholar 

  50. Kac, V.G.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56, 57–92 (1980). https://doi.org/10.1007/BF01403155

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1994). https://doi.org/10.1017/CBO9780511626234

  52. Kalkkinen, J., Stelle, K.S.: Large gauge transformations in M-theory. J. Geom. Phys. 48, 100–132 (2003). https://doi.org/10.1016/S0393-0440(03)00027-5. arXiv:hep-th/0212081

  53. Kollár, J., Smith, K., Corti, A.: Rational and Nearly Rational Varieties. Cambridge University Press, Cambridge (2004). ([ISBN:0-521-83207-1])

  54. Lavrinenko, I., Lü, H., Pope, C.N.: Fibre bundles and generalised dimensional reduction. Class. Quant. Grav. 15, 2239–2256 (1998). https://doi.org/10.1088/0264-9381/15/8/008. arXiv:hep-th/9710243

  55. Lavrinenko, I., Lü, H., Pope, C.N., Stelle, K.S.: Superdualities, brane tensions and massive IIA/IIB duality. Nucl. Phys. B 555, 201–227 (1999). https://doi.org/10.1016/S0550-3213(99)00307-7. arXiv:hep-th/9903057

  56. Lu, H., Pope, C.N.: p-brane solitons in maximal supergravities. Nucl. Phys. B 465, 127–156 (1996). https://doi.org/10.1016/0550-3213(96)00048-X. arXiv:hep-th/9512012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Majewski, M.: Rational homotopical models and uniqueness. Mem. Am. Math. Soc. 143(682), 788 (2000)

    MathSciNet  MATH  Google Scholar 

  58. Manin, Y.: The Tate height of points on an abelian variety: its variants and applications. Izv. Akad. Sci. SSSR 28, 1363–1390 (1964)

    MathSciNet  MATH  Google Scholar 

  59. Manin, Y.: The Tate height of points on an abelian variety: its variants and applications. Am. Math. Soc. Transl. 59, 82–119 (1966). arxiv:ams.org/trans2-59

  60. Manin, Y.I.: Cubic Forms, 2nd edn. North-Holland, Amsterdam (1986). ([ISBN:0-444-87823-8])

  61. Manin, Y.I.: Gauge Field Theory and Complex Geometry, 2nd edn. Springer, Berlin (1997). https://doi.org/10.1007/978-3-662-07386-5

  62. Marcus, N., Schwarz, J.H.: Three-dimensional supergravity theories. Nucl. Phys. B 228, 145–162 (1983). https://doi.org/10.1016/0550-3213(83)90402-9

    Article  ADS  MathSciNet  Google Scholar 

  63. Mathai, V., Sati, H.: Some relations between twisted \(K\)-theory and \(E_8\) gauge theory. J. High Energy Phys. 0403, 016 (2004). https://doi.org/10.1088/1126-6708/2004/03/016. arXiv:hep-th/0312033

  64. Nicolai, H.: A hyperbolic Kac-Moody algebra from supergravity. Phys. Lett. B 276, 333–340 (1992). https://doi.org/10.1016/0370-2693(92)90328-2

    Article  ADS  MathSciNet  Google Scholar 

  65. Obers, N.A., Pioline, B.: U-duality and M-theory. Phys. Rep. 318, 113–225 (1999). https://doi.org/10.1016/S0370-1573(99)00004-6. arXiv:hep-th/9809039

  66. Quillen, D.: Rational homotopy theory. Ann. Math. 90, 205–295 (1969). https://doi.org/10.2307/1970725

    Article  MathSciNet  MATH  Google Scholar 

  67. Renner, L.E.: Automorphism groups of minimal models, MSc Thesis, U. British Columbia, (1978), https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0080346

  68. Riccioni, F., West, P.: Dual fields and \(E_{11}\). Phys. Lett. B 645, 286–292 (2007). arXiv:hep-th/0612001

  69. Roberts, D.M.: Topological sectors for heterotic M5-brane charges under Hypothesis H. J. High Energy Phys. 2020, 52 (2020). https://doi.org/10.1007/JHEP06(2020)052. [arXiv:2003.09832

  70. H. Sati, Duality symmetry and the form fields of M-theory, J. High Energy Phys. 0606 (2006) 062

  71. Sati, H.: Geometric and topological structures related to M-branes, Proc. Symp. Pure Math. 81, 181-236, (2010) [ams:pspum/081], arXiv:1001.5020

  72. Sati, H.: Framed M-branes, corners, and topological invariants. J. Math. Phys. 59, 062304 (2018). https://doi.org/10.1063/1.5007185. arXiv:1310.1060

  73. Sati, H., Schreiber, U.: Equivariant Cohomotopy implies orientifold tadpole cancellation. J. Geom. Phys. 156, 103775 (2020). https://doi.org/10.1016/j.geomphys.2020.103775. arXiv:1909.12277

  74. Sati, H., Schreiber, U.: Differential Cohomotopy implies intersecting brane observables via configuration spaces and chord diagrams, arXiv:1912.10425

  75. Sati, H., Schreiber, U.: M/F-theory as Mf-theory, arXiv:2103.01877

  76. Sati, H., Voronov, A.A.: Mysterious Triality and M-Theory, arXiv:2212.13968

  77. Schwarz, J.: Covariant field equations of chiral \(N = 2\)\(D = 10\) supergravity. Nucl. Phys. B 226, 269–288 (1983). https://doi.org/10.1016/0550-3213(83)90192-X

    Article  ADS  Google Scholar 

  78. Schwarz, J., West, P.: Symmetries and transformations of chiral \(N = 2\)\(D = 10\) Supergravity. Phys. Lett. 126B, 301–304 (1983). https://doi.org/10.1016/0370-2693(83)90168-5

  79. Souéres, B., Tsimpis, D.: Action principle and the supersymmetrization of Chern-Simons terms in eleven-dimensional supergravity. Phys. Rev. D 95, 026013 (2017). https://doi.org/10.1103/PhysRevD.95.026013. arXiv:1612.02021

  80. Sullivan, D.: Infinitesimal computations in topology. Publ. Math. Inst. Hautes Études Sci. 47, 269–331 (1977)

  81. Tanii, Y.: Introduction to supergravities in diverse dimensions, YITP Workshop on Supersymmetry, 27–30 March (1996), Kyoto, Japan, arXiv:hep-th/9802138

  82. Tanré, D.: Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan. Lecture Notes in Math, vol. 1025. Springer, Berlin (1983)

  83. Vigué-Poirrier, M., Burghelea, D.: A model for cyclic homology and algebraic \(K\)-theory of \(1\)-connected topological spaces. J. Differ. Geom. 22, 243–253 (1985). https://doi.org/10.4310/jdg/1214439821

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Alexey Bondal, Igor Dolgachev, Amer Iqbal, Mikhail Kapranov, and Urs Schreiber for helpful discussions. We are also grateful for the suggestion of the referee and editor to split the paper into a more mathematical part, which is what this paper is, and a more physical follow-up part [SV22]. We appreciate that the anonymous referee practically worked with us on weeding out errors and restructuring the exposition to improve the paper. The first author thanks the University of Minnesota, the Aspen Center for Physics, and the Park City Mathematics Institute (IAS) for hospitality during the work on this project, and acknowledges the support by Tamkeen under the NYU Abu Dhabi Research Institute grant CG008. The second author thanks NYU Abu Dhabi and Kavli IPMU for creating remarkable opportunities to initiate and work on this project. His work was also supported by World Premier International Research Center Initiative (WPI), MEXT, Japan, and a Collaboration Grant from the Simons Foundation (#585720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Voronov.

Additional information

Communicated by C. Schweigert.

To our teachers: Igor V. Dolgachev and Yuri I. Manin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sati, H., Voronov, A.A. Mysterious Triality and Rational Homotopy Theory. Commun. Math. Phys. 400, 1915–1960 (2023). https://doi.org/10.1007/s00220-023-04643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04643-7

Navigation