Skip to main content
Log in

Relative Reshetikhin–Turaev Invariants, Hyperbolic Cone Metrics and Discrete Fourier Transforms I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose the Volume Conjecture for the relative Reshetikhin–Turaev invariants of a closed oriented 3-manifold with a colored framed link inside it whose asymptotic behavior is related to the volume and the Chern–Simons invariant of the hyperbolic cone metric on the manifold with singular locus the link and cone angles determined by the coloring. We prove the conjecture in the case that the ambient 3-manifold is obtained by doing an integral surgery along some components of a fundamental shadow link and the complement of the link in the ambient manifold is homeomorphic to the fundamental shadow link complement, for sufficiently small cone angles. Together with Costantino and Thurston’s result that all compact oriented 3-manifolds with toroidal or empty boundary can be obtained by doing an integral surgery along some components of a suitable fundamental shadow link, this provides a possible approach of solving Chen–Yang’s Volume Conjecture for the Reshetikhin–Turaev invariants of closed oriented hyperbolic 3-manifolds. We also introduce a family of topological operations (the change-of-pair operations) that connect all pairs of a closed oriented 3-manifold and a framed link inside it that have homeomorphic complements, which correspond to doing the partial discrete Fourier transforms to the corresponding relative Reshetikhin–Turaev invariants. As an application, we find a Poisson Summation Formula for the discrete Fourier transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Barrett, J.: Geometrical measurements in three-dimensional quantum gravity. Int. J. Mod. Phys. A 18(supp02), 97–113 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Belletti, G.: A maximum volume conjecture for hyperbolic polyhedra, preprint arXiv:2002.01904

  3. Belletti, G., Yang, T.: Discrete Fourier transform, quantum 6j-symbols and deeply truncated tetrahedra, preprint arXiv:2009.03684

  4. Belletti, G., Detcherry, R., Kalfagianni, E., Yang, T.: Growth of quantum 6j-symbols and applications to the Volume Conjecture. J. Differ. Geom. 120, 199–229 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Three-manifold invariants derived from the Kauffman bracket. Topology 31(4), 685–699 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Q., Yang, T.: Volume conjectures for the Reshetikhin–Turaev and the Turaev–Viro invariants. Quantum Topol. 9(3), 419–460 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, D., Hodgson, C., Kerckhoff, S.: Three-Dimensional Orbifolds and Cone-manifolds. With a postface by Sadayoshi Kojima, MSJ Memoirs, 5. Mathematical Society of Japan, Tokyo, x+170 pp, ISBN: 4-931469-05-1 (2000)

  8. Costantino, F.: \(6j\)-symbols, hyperbolic structures and the volume conjecture. Geom. Topol. 11, 1831–1854 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costantino, F.: Colored Jones invariants of links in \(S^3\#^kS ^2\times S^1\) and the volume conjecture. J. Lond. Math. Soc. 76(2), 1–15 (2007)

    Article  MathSciNet  Google Scholar 

  10. Costantino, F., Thurston, D.: 3-manifolds efficiently bound 4-manifolds. J. Topol. 1(3), 703–745 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Detcherry, R., Kalfagianni, E.: Gromov norm and Turaev–Viro invariants of 3-manifolds, to appear in Ann. Sci. de l’Ecole Normale Sup

  12. Detcherry, R., Kalfagianni, E., Yang, T.: Turaev–Viro invariants, colored Jones polynomials and volume. Quantum Topol. 9(4), 775–813 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faddeev, L.: Discrete Heisenberg–Weyl group and modular group. Lett. Math. Phys. 34(3), 249–254 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Faddeev, L., Kashaev, R., Volkov, A.: Strongly coupled quantum discrete Liouville theory, I. Algebraic approach and duality. Commun. Math. Phys. 219(1), 199–219 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Garoufalidis, S., Le, T.: Asymptotics of the colored Jones function of a knot. Geom. Topol. 15(4), 2135–2180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial. Commun. Math. Phys. 255, 577–627 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hodgson, C., Kerckhoff, S.: Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery. J. Differ. Geom. 48(1), 1–59 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kashaev, R.: The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys. 39(3), 269–275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kojima, S.: Deformations of hyperbolic 3-cone-manifolds. J. Differ. Geom. 49(3), 469–516 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumar, S.: Fundamental shadow links realized as links in \(S^3\). arXiv:2005.11447

  21. Lickorish, W.: The skein method for three-manifold invariants. J. Knot Theory Ramif. 2(2), 171–194 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Z.: Quon language: surface algebras and Fourier duality. Commun. Math. Phys. 366(3), 865–894 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. London, D.: A note on matrices with positive definite real part. Proc. Am. Math. Soc. 82(3), 322–324 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyerhoff, R., Ruberman, D.: Mutation and the \(\eta \)-invariant. J. Differ. Geom. 31(1), 101–130 (1990). https://doi.org/10.4310/jdg/1214444091

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyerhoff, R., Ouyang, M.: The \(\eta \)-invariants of cusped hyperbolic 3-manifolds. Can. Math. Bull. 40(2), 204–213 (1997). https://doi.org/10.4153/CMB-1997-025-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Murakami, H., Murakami, J.: The colored Jones polynomials and the simplicial volume of a knot. Acta Math. 186(1), 85–104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murakami, H., Murakami, J., Okamoto, M., Takata, T., Yokota, Y.: Kashaev’s conjecture and the Chern–Simons invariants of knots and links. Exp. Math. 11, 427–435 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murakami, J., Yano, M.: On the volume of hyperbolic and spherical tetrahedron. Commun. Anal. Geom. 13(2), 379–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murakami, H., Yokota, Y.: The colored Jones polynomial of the figure eight knot and its Dehn surgery spaces. J. Reine Angew. Math. 607, 47–68 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Neumann, W., Zagier, D.: Volumes of hyperbolic three-manifolds. Topology 24(3), 307–332 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ohtsuki, T.: On the asymptotic expansion of the Kashaev invariant of the \(5_2\) knot. Quantum Topol. 7(4), 669–735 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ohtsuki, T.: On the asymptotic expansion of the quantum \(SU(2)\) invariant at \(q=\exp (4\pi \sqrt{-1}/N)\) for closed hyperbolic 3-manifolds obtained by integral surgery along the figure-eight knot. Algebr. Geom. Topol. 18(7), 4187–4274 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Purcell, J.: An introduction to fully augmented links. http://users.monash.edu/~jpurcell/papers/expos-auglinks.pdf

  34. Rolfsen, D.: Knots and Links, 2nd Printing with Corrections, Mathematics Lecture Series 7, Publish or Perish, Inc. (1990)

  35. Stein, E., Shakarchi, R.: Fourier Analysis, An introduction. Princeton Lectures in Analysis, 1. Princeton University Press, Princeton, NJ, xvi+311 pp. ISBN: 0-691-11384-X (2003)

  36. Thurston, W.: The Geometry and Topology of \(3\)-Manifolds. Princeton University Mathematics Department http://msri.org/publications/books/gt3m/ (1978)

  37. Ushijima: A Volume Formula for Generalised Hyperbolic Tetrahedra, Non-Euclidean geometries, 249–265, Math. Appl. (N. Y.), 581, Springer, New York (2006)

  38. van der Veen, R.: The volume conjecture for augmented knotted trivalent graph. Algebr. Geom. Topol. 9(2), 691–722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wong, K.H., Yang, T.: On the Volume Conjecture for hyperbolic Dehn-filled \(3\)-manifolds along the figure-eight knot, preprint arXiv:2003.10053

  40. Wong, K.H., Yang, T.: Relative Reshetikhin–Turaev invariants, hyperbolic cone metrics and discrete Fourier transforms II, preprint arXiv:2009.07046

  41. Wong, K.H., Yang, T.: Asymptotic expansion of relative quantum invariants, preprint arXiv:2103.15056

  42. Yoshida, T.: The \(\eta \)-invariant of hyperbolic \(3\)-manifolds. Invent. Math. 81(3), 473–514 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Zagier, D.: The Dilogarithm Function, Frontiers in Number Theory, Physics, and Geometry. II, pp. 3–65. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Giulio Belletti, Francis Bonahon, Qingtao Chen, Effie Kalfagianni, Sanjay Kumar, Zhengwei Liu, Feng Luo, Hongbin Sun and Roland van der Veen for helpful discussions. They are also grateful for the referees’ invaluable suggestions and comments. The first author would like to thank the organizers of the “Nearly Carbon Neutral Geometric Topology Conference 2020” for the invitation and for providing a friendly environment for inspiring discussions. The second author is supported by NSF Grants DMS-1812008 and DMS–2203334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Yang.

Additional information

Communicated by Horng-Tzer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Proposition 5.1

A Proof of Proposition 5.1

The goal of this appendix is to prove Proposition 5.1. We need the following two Lemmas whose proofs are included at the end of the appendix.

Lemma A.1

For any \(\epsilon >0,\) there exists a \(\delta > 0\) such that

  1. (1)
    $$\begin{aligned} \int _{-\epsilon }^\epsilon e^{-r z^2} dz = \sqrt{\frac{\pi }{r}} + O(e^{-\delta r}), \end{aligned}$$

    and

  2. (2)
    $$\begin{aligned} \int _{-\epsilon }^\epsilon z^2 e^{-r z^2} dz = \frac{1}{2}\sqrt{\frac{\pi }{r^3}} + O(e^{-\delta r}). \end{aligned}$$

Lemma A.2

Let \(D_{{\textbf{z}}}\) be a region in \({\mathbb {C}}^n\) containing the origin \({\textbf{0}}\) and let \(g^{{\textbf{a}}}\) a family of complex valued functions on \(D_{{\textbf{z}}}\) smoothly parametrized by \({\textbf{a}}\) in a region \(D_{{\textbf{a}}}\) of \({\mathbb {R}}^k.\) Then there exist families of functions \(h_1^{{\textbf{a}}},\dots , h_n^{{\textbf{a}}},\) and \(k_1^{{\textbf{a}}},\dots ,k_n^{{\textbf{a}}}\) such that

  1. (1)

    all of \(h_i^{{\textbf{a}}}\)’s and \(k_i^{{\textbf{a}}}\)’s are smoothly parametrized by \({\textbf{a}}\) in \(D_{{\textbf{a}}},\)

  2. (2)

    for each \({\textbf{a}}\in D_{{\textbf{a}}},\) \(h_i^{{\textbf{a}}}\) has variables \(z_{i+1},\dots ,z_n\) and is holomorphic in them,

  3. (3)

    for each \({\textbf{a}}\in D_{{\textbf{a}}},\) \(k_i^{{\textbf{a}}}\) has variables \(z_i,\dots ,z_n\) and is holomorphic in them, and

  4. (4)
    $$\begin{aligned} g^{{\textbf{a}}}( z_1,\dots , z_n)=g^{{\textbf{a}}}({\textbf{0}})+\sum _{i=1}^nh_i^{{\textbf{a}}}(z_{i+1},\dots , z_n)z_i+\sum _{i=1}^nk_i^{{\textbf{a}}}(z_i,\dots ,z_n)z_i^2. \end{aligned}$$

Lemma A.3

(Complex Morse Lemma) Let \(D_{{\textbf{z}}}\) be a region in \({\mathbb {C}}^n,\) let \(D_{{\textbf{a}}}\) be a region in \({\mathbb {R}}^k,\) and let \(f: D_{{\textbf{z}}} \times D_{{\textbf{a}}} \rightarrow {\mathbb {C}}\) be a complex valued function that is holomorphic in \({\textbf{z}}\in D_{{\textbf{z}}}\) and smooth in \({\textbf{a}}\in D_{{\textbf{a}}}.\) For \({\textbf{a}}\in D_{{\textbf{a}}},\) let \(f^{{\textbf{a}}}: D_{{\textbf{z}}}\rightarrow {\mathbb {C}}\) be the function defined by \(f^{{\textbf{a}}}({\textbf{z}})=f({\textbf{z}},{\textbf{a}}).\) Suppose for each \({\textbf{a}}\in D_{{\textbf{a}}},\) \(f^{{\textbf{a}}}\) has a non-degenerate critical point \(c_{{\textbf{a}}}\) which smoothly depends on \({\textbf{a}}.\) Then for each \({\textbf{a}}_0\in D_{{\textbf{a}}},\) there exists an open set \(V \subset {\mathbb {C}}^n\) containing \({\textbf{0}},\) an open set \(A \subset D_{{\textbf{a}}}\) containing \({\textbf{a}}_0,\) and a smooth function \(\psi : V \times A \rightarrow D_{{\textbf{z}}}\) such that, if we denote \(\psi ^{{\textbf{a}}}({\textbf{Z}}) = \psi ({\textbf{Z}}, {\textbf{a}}),\) then for each \({\textbf{a}}\in D_{{\textbf{a}}},\) \({\textbf{z}} = \psi ^{{\textbf{a}}}({\textbf{Z}})\) is a holomorphic change of variable on V such that

$$\begin{aligned} \psi ^{{\textbf{a}}}({\textbf{0}}) = {\textbf{c}}_{{\textbf{a}}}, \end{aligned}$$
$$\begin{aligned} f^{{\textbf{a}}}(\psi ^{{\textbf{a}}}({\textbf{Z}})) = f^{{\textbf{a}}}({\textbf{c}}_{{\textbf{a}}}) - Z_1^2 - \dots - Z_n^2, \end{aligned}$$

and

$$\begin{aligned} \det \Big ( D (\psi ^{{\textbf{a}}})({\textbf{0}}) \Big ) = \frac{2^{\frac{n}{2}}}{\sqrt{- \det \textrm{Hess}(f^{\textbf{a}})({\textbf{c}}_{{\textbf{a}}})}}. \end{aligned}$$

Proof of Proposition 5.1

We write \({\textbf{z}}=(z_1,\dots , z_n) \in {\mathbb {C}}^n,\) \({\textbf{Z}} = (Z_1,\dots , Z_n) \in {\mathbb {C}}^n,\) \({\textbf{W}} = (W_1,\dots , W_n) \in {\mathbb {C}}^n,\) \(d{\textbf{z}}=dz_1\dots dz_n\) and \({\textbf{0}}=(0,\dots ,0) \in {\mathbb {C}}^n.\)

We first consider the special case \({\textbf{c}}_r={\textbf{0}},\) \(S_r=[-\epsilon ,\epsilon ]^n\subset {\mathbb {R}}^n\subset {\mathbb {C}}^n,\) and

$$\begin{aligned} f^{{\textbf{a}}_r}({\textbf{z}})=-\sum _{i=1}^nz_i^2 \end{aligned}$$

for each r. In this case, let

$$\begin{aligned} \sigma ^{{\textbf{a}}_r}_{ r}({\textbf{z}})=\upsilon _{r}({\textbf{z}}, {\textbf{a}}_r)\int _0^1e^{\frac{\upsilon _{r}({\textbf{z}}, {\textbf{a}}_r)}{r}s}ds. \end{aligned}$$

Then we can write

$$\begin{aligned} e^{\frac{\upsilon _{r}({\textbf{z}}, {\textbf{a}}_r)}{r}}=1+\frac{\sigma _{r}^{{\textbf{a}}_r}({\textbf{z}})}{r}, \end{aligned}$$

and

$$\begin{aligned} g^{{\textbf{a}}_r}({\textbf{z}})e^{rf^{{\textbf{a}}_r}_{r}(\textbf{z})}=g^{{\textbf{a}}_r}({\textbf{z}})e^{rf^{{\textbf{a}}_r}( \textbf{z})}+\frac{1}{r}g^{{\textbf{a}}_r}({\textbf{z}})\sigma ^{\textbf{a}_r}_{r}({\textbf{z}})e^{rf^{{\textbf{a}}_r}({\textbf{z}})}. \end{aligned}$$
(A.1)

Since \(|\upsilon _{r}({\textbf{z}}, {\textbf{a}}_r)|<M\) for some \(M>0\) independent of r

$$\begin{aligned} |\sigma ^{{\textbf{a}}_r}_{r}({\textbf{z}})|<M\int _0^1e^{\frac{M}{r}s}ds=M\bigg (\frac{e^{\frac{M}{r}}-1}{\frac{M}{r}}\bigg )<2M. \end{aligned}$$

Since \(\{{\textbf{a}}_r\}\) is convergent and g is smooth in \(\textbf{a},\) if M is big enough, then \(|g^{{\textbf{a}}_r}({\textbf{z}})|<M\) for all \(z \in S_r=[-\epsilon ,\epsilon ]^n\) for r large enough. By Lemma A.1 (1), we have

$$\begin{aligned} \begin{aligned} \Big |\int _{S_r}\frac{1}{r}g^{{\textbf{a}}_r} ({\textbf{z}})\sigma ^{{\textbf{a}}_r}_r({\textbf{z}})e^{rf^{{\textbf{a}}_r}({\textbf{z}})}d{\textbf{z}}\Big |&<\frac{2M^2}{r}\int _{S_r}e^{rf^{{\textbf{a}}_r}({\textbf{z}})}d{\textbf{z}}\\&=\frac{2M^2}{r}\Big (\frac{\pi }{r}\Big )^{\frac{n}{2}}+O(e^{-\delta r})=O\Big (\frac{1}{\sqrt{r^{n+2}}}\Big ). \end{aligned}\nonumber \\ \end{aligned}$$
(A.2)

By Lemma A.2, we have

$$\begin{aligned} g^{{\textbf{a}}_r}( z_1,\dots , z_n)=g^{{\textbf{a}}_r}({\textbf{0}})+\sum _{i=1}^nh_i^{{\textbf{a}}_r}(z_{i+1},\dots , z_n)z_i+\sum _{i=1}^nk_i^{{\textbf{a}}_r}(z_i,\dots ,z_n)z_i^2 \end{aligned}$$

for some holomorphic functions \(\{h^{{\textbf{a}}_r}_{i}\}\) and \(\{k^{{\textbf{a}}_r}_i\},\) \(i\in \{1,\dots ,n\}.\) Then by Lemma A.1 (1), we have

$$\begin{aligned} \int _{S_r} g^{{\textbf{a}}_r}({\textbf{0}})e^{rf^{{\textbf{a}}_r}(\textbf{z})}d{\textbf{z}}=g^{{\textbf{a}}_r} (\textbf{0})\Big (\frac{\pi }{r}\Big )^{\frac{n}{2}}+O\Big (\frac{1}{r}\Big ). \end{aligned}$$
(A.3)

Since each \(z_ie^{-rz_i^2}\) is odd, we have

$$\begin{aligned} \int _{-\epsilon }^\epsilon z_ie^{-rz_i^2}dz_i=0. \end{aligned}$$

As a consequence, for each i,  we have

$$\begin{aligned} \begin{aligned}&\int _{[-\epsilon ,\epsilon ]^n} h_i^{{\textbf{a}}_r}(z_{i+1},\dots ,z_n)z_ie^{rf^{{\textbf{a}}_r}({\textbf{z}})}d{\textbf{z}}\\&\quad =\int _{[-\epsilon ,\epsilon ]^{n-1}}h_i^{\textbf{a}_r}(z_{i+1},\dots ,z_n)e^{-r\sum _{j\ne i}z_j^2}\prod _{j\ne i}dz_j\cdot \int _{-\epsilon }^\epsilon z_ie^{-rz_i^2}dz_i =0. \end{aligned}\nonumber \\ \end{aligned}$$
(A.4)

Since \(\{{\textbf{a}}_r\}\) is convergent and \(k^{{\textbf{a}}}_{i}\) is smooth in \({\textbf{a}},\) if M is big enough, then for r large enough, \(|k^{{\textbf{a}}_r}_i({\textbf{z}})|<M\) for all \({\textbf{z}} \in S_r,\) \(i\in \{1,\dots , n\}.\) By Lemma A.1 we have for each \(i\in \{1,\dots , n\}\)

$$\begin{aligned} \Big |\int _{S_r} k^{{\textbf{a}}_r}_{i}({\textbf{z}})z_i^2e^{rf^{\textbf{a}_r}({\textbf{z}})}d{\textbf{z}}\Big |< & {} M\Big (\int _{-\epsilon }^\epsilon z_i^2e^{-rz_i^2}dz_i\Big )\prod _{j\ne i}\Big ( \int _{-\epsilon }^\epsilon e^{-rz_j^2}dz_j\Big ) \nonumber \\= & {} O \Big (\frac{1}{\sqrt{r^{n+2}}}\Big ). \end{aligned}$$
(A.5)

Putting (A.3), (A.4) and (A.5) together, we have the result for this special case.

For the general case, by assumption (6) of Proposition 5.1, for \({\textbf{a}}\) sufficiently close to \({\textbf{a}}_0,\) \(f^{\textbf{a}}\) has a unique non-degenerate critical point \({\textbf{c}}_{\textbf{a}}\) in a sufficiently small neighborhood of \({\textbf{c}}_0.\) Then we can apply Lemma A.3 to the function f and \({\textbf{a}}_0.\) Let VA and \(\psi \) respectively be the two open sets and the change of variable function as described in Lemma A.3. For r sufficiently large, let

$$\begin{aligned} U_r=\psi ^{{\textbf{a}}_r}\Big (\prod _{i=1}^n\big \{Z_i\in {\mathbb {C}}\ \big |\ -\epsilon<\textrm{Re}(Z_i)<\epsilon , -\epsilon<\textrm{Im}(Z_i)<\epsilon \big \}\Big ) \end{aligned}$$

for some sufficiently small \(\epsilon >0 .\) Let \(\textrm{Vol}(S_r\setminus U_r)\) be the Euclidean volume of \(S_r\setminus U_r.\) By the compactness of \(S_r\setminus U_r\) and by assumptions (2), (4) and (5) of Proposition 5.1, there exist constants \(M>0\) and \(\delta >0\) independent of r such that \(|g^{{\textbf{a}}_r}({\textbf{z}})|<M,\) \(\textrm{Vol}(S_r\setminus U_r)<M\) and

$$\begin{aligned} \textrm{Re} f_r^{{\textbf{a}}_r}({\textbf{z}})<\textrm{Re} f^{\textbf{a}_r}({\textbf{c}}_r)-\delta \end{aligned}$$
(A.6)

on \(S_r\setminus U\) for r large enough. Then

$$\begin{aligned} \Big |\int _{S_r\setminus U}g^{{\textbf{a}}_r}({\textbf{z}})e^{rf_r^{\textbf{a}_r}({\textbf{z}})}d{\textbf{z}}\Big | < M^2\Big (e^{r(\textrm{Re}f^{\textbf{a}_r}({\textbf{z}})({\textbf{c}}_r)-\delta )}\Big ) = O\Big (e^{r(\textrm{Re}f^{{\textbf{a}}_r}({\textbf{z}})(\textbf{c}_r)-\delta )}\Big ) . \end{aligned}$$
(A.7)

In Fig. 22 below, the shaded region is where \(\textrm{Re}(-\sum _{i=1}^nZ_i^2)<0.\) For each \({\textbf{a}}_r,\) in \(\overline{(\psi ^{{\textbf{a}}_r})^{-1}(U_r)}\) there is a homotopy \(H_{r}\) from \(\overline{(\psi ^{{\textbf{a}}_r})^{-1}(S_r\cap U_r)}\) to \([-\epsilon ,\epsilon ]^n\subset {\mathbb {R}}^n\) defined by “pushing everything down” to the real part. This is where we use condition (3). Let \(S_r'=H_r(\partial (\psi ^{{\textbf{a}}_r})^{-1}(S_r\cap U_r)\times [0,1]).\) Then \(\overline{(\psi ^{\textbf{a}_r})^{-1}(S_r\cap U_r)}\) is homotopic to \(S_r'\cup [-\epsilon ,\epsilon ]^n.\)

Fig. 22
figure 22

.

Then by analyticity,

$$\begin{aligned}&\int _{S_r\cap U}g^{{\textbf{a}}_r}({\textbf{z}})e^{rf_r^{{\textbf{a}}_r}({\textbf{z}})}d{\textbf{z}} \nonumber \\&\quad =\int _{(\psi ^{{\textbf{a}}_r})^{-1}(S_r\cap U)}g^{{\textbf{a}}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))\det \mathrm D(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))e^{rf_r^{{\textbf{a}}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))}d{\textbf{Z}} \nonumber \\&\quad =\int _{S_r'}g^{{\textbf{a}}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))\det \mathrm D(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))e^{rf_r^{\textbf{a}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))}d{\textbf{Z}}\nonumber \\&\qquad +\int _{[-\epsilon ,\epsilon ]^n}g^{{\textbf{a}}_r}(\psi ({\textbf{Z}}))\det \mathrm D(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))e^{rf_r^{\textbf{a}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))}d{\textbf{Z}}. \end{aligned}$$
(A.8)

Since \(\psi ^{{\textbf{a}}_r}(S')\subset S_r\setminus U_r,\) by (A.6)

$$\begin{aligned}{} & {} \int _{S_r'}g^{{\textbf{a}}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))\det \mathrm D(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))e^{rf_r^{\textbf{a}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))}d{\textbf{Z}} \nonumber \\{} & {} \quad = \int _{\psi ^{\textbf{a}_r}(S_r')} g^{{\textbf{a}}_r}({\textbf{z}})e^{rf_r^{{\textbf{a}}_r}(\textbf{z})} d{\textbf{z}} = O\Big (e^{r(\textrm{Re}f^{{\textbf{a}}_r} (\textbf{c}_r)-\delta )}\Big ); \end{aligned}$$
(A.9)

and by the special case

$$\begin{aligned} \begin{aligned}&\int _{[-\epsilon ,\epsilon ]^n}g^{{\textbf{a}}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))\det \mathrm D(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))e^{rf_r^{{\textbf{a}}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))}d{\textbf{Z}}\\&\quad =e^{rf^{{\textbf{a}}_r}({\textbf{c}}_r)}\int _{[-\epsilon ,\epsilon ]^n}g^{{\textbf{a}}_r}(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))\det \mathrm D(\psi ^{{\textbf{a}}_r}({\textbf{Z}}))e^{r\big (-\sum _{i=1}^nZ_i^2 + \frac{\upsilon _{ r}({\textbf{z}},{\textbf{a}}_r)}{r^2} \big )}d{\textbf{Z}}\\&\quad =e^{rf^{{\textbf{a}}_r}({\textbf{c}}_r)}g^{{\textbf{a}}_r}({\psi }^{{\textbf{a}}_r}({\textbf{0}}))\det \mathrm D(\psi ^{{\textbf{a}}_r}({\textbf{0}}))\Big (\frac{\pi }{r}\Big )^{\frac{n}{2}}\Big (1+O\Big (\frac{1}{r}\Big )\Big )\\&\quad =\Big (\frac{2\pi }{r}\Big )^{\frac{n}{2}}\frac{g^{\textbf{a}_r}({\textbf{c}}_r)}{\sqrt{-\det \textrm{Hess}(f^{{\textbf{a}}_r}) (\textbf{c}_r)}} e^{rf^{{\textbf{a}}_r}({\textbf{c}}_r)}\Big ( 1 + O \Big ( \frac{1}{r} \Big ) \Big ). \end{aligned} \end{aligned}$$

Together with (A.7), (A.8) and (A.9), we have the result. \(\square \)

Proof of Lemma A.1

For (1), we have

$$\begin{aligned} \int _{-\epsilon }^\epsilon e^{-rz^2}dz=\int _{-\infty }^\infty e^{-rz^2}dz-\int _{-\infty }^{-\epsilon } e^{-rz^2}dz-\int _{\epsilon }^\infty e^{-rz^2}dz, \end{aligned}$$

where the first term

$$\begin{aligned} \int _{-\infty }^\infty e^{-rz^2}dz=\sqrt{\frac{\pi }{r}} \end{aligned}$$

is a Gaussian integral, and the other two terms

$$\begin{aligned} \int _{-\infty }^{-\epsilon } e^{-rz^2}dz=\int _{\epsilon }^\infty e^{-rz^2}dz\leqslant \int _{\epsilon }^\infty e^{-r\epsilon z}dz=\frac{e^{-r\epsilon ^2}}{r\epsilon }=O(e^{-\delta r}). \end{aligned}$$

For (2), by integration by parts, we have

$$\begin{aligned} \int _{-\epsilon }^\epsilon e^{-rz^2}dz=ze^{-rz^2}\Big |_{-\epsilon }^\epsilon +2r\int _{-\epsilon }^\epsilon z^2e^{-rz^2}dz, \end{aligned}$$

hence by (1)

$$\begin{aligned} \int _{-\epsilon }^\epsilon z^2e^{-rz^2}dz=\frac{1}{2r}\Big (\int _{-\epsilon }^\epsilon e^{-rz^2}dz-2\epsilon e^{-r\epsilon ^2}\Big )=\frac{1}{2}\sqrt{\frac{\pi }{r^3}}+O(e^{-\delta r}). \end{aligned}$$

\(\square \)

Proof of Lemma A.2

We use induction on n. For \(n=1,\) if \(z_1\ne 0,\) then we can write

$$\begin{aligned} g^{{\textbf{a}}}(z_1)=g^{{\textbf{a}}}(0)+\frac{dg^{{\textbf{a}}}}{dz_1}(0)z_1+\bigg (\frac{g^{{\textbf{a}}}(z_1)-g^{{\textbf{a}}}(0)-\frac{dg^{{\textbf{a}}}}{dz_1}(0)z_1}{z_1^2}\bigg )z_1^2, \end{aligned}$$

and let

$$\begin{aligned} h_1^{{\textbf{a}}}=g^{{\textbf{a}}}(0) \end{aligned}$$

and

$$\begin{aligned} k_1^{{\textbf{a}}}(z_1)=\frac{g^{{\textbf{a}}}(z_1)-g^{{\textbf{a}}}(0)-\frac{dg^{{\textbf{a}}}}{dz_1}(0)z_1}{z_1^2}. \end{aligned}$$

By computing the Laurent expansion of \(k_1^{{\textbf{a}}}(z_1),\) one sees \(z_1=0\) is a removable singularity, and \(k_1^{{\textbf{a}}}(z_1)\) extends as a holomorphic function. From the formulas, we also see that \(h_1^{{\textbf{a}}}\) and \(k_1^{{\textbf{a}}}\) smoothly depend on \({\textbf{a}}.\) This proves the case \(n=1.\)

Now assume that the result holds when \(n=l.\) For \(n=l+1,\) if \(z_1\ne 0,\) then we have

$$\begin{aligned} \begin{aligned} g^{{\textbf{a}}}(z_1,\dots ,z_{l+1})&=g^{{\textbf{z}}}(0,z_2,\dots ,z_{l+1})+\frac{\partial g^{{\textbf{a}}}}{\partial z_1}(0,z_2,\dots ,z_{l+1})z_1\\&\quad +\bigg (\frac{g^{{\textbf{a}}}(z_1,\dots ,z_{l+1})-g^{\textbf{a}}(0,z_2,\dots ,z_{l+1})-\frac{\partial g^{{\textbf{a}}}}{\partial z_1}(0,z_2,\dots ,z_{l+1})z_1}{z_1^2}\bigg )z_1^2, \end{aligned} \end{aligned}$$

and let

$$\begin{aligned} h_1^{{\textbf{a}}}(z_2,\dots ,z_{l+1})=\frac{\partial g^{{\textbf{a}}}}{\partial z_1}(0,z_2,\dots ,z_{l+1}) \end{aligned}$$

and

$$\begin{aligned} k_1^{{\textbf{a}}}(z_1,\dots ,z_{l+1})=\frac{g^{{\textbf{a}}}(z_1,\dots ,z_{l+1})-g^{{\textbf{a}}}(0,z_2,\dots ,z_{l+1})-\frac{\partial g^{{\textbf{a}}}}{\partial z_1}(0,z_2,\dots ,z_{l+1})z_1}{z_1^2}. \end{aligned}$$

By computing the Laurent expansion again, one can see that \(k_1^{{\textbf{a}}}\) holomorphically extends to \(z_1=0;\) and from the formulas, \(h_1^{{\textbf{a}}}\) and \(k_1^{{\textbf{a}}}\) smoothly depend on \({\textbf{a}}.\) Since \(g^{{\textbf{a}}}(0,z_2,\dots , z_{l+1})\) has l variables, by the induction assumption,

$$\begin{aligned} g^{{\textbf{a}}}(0,z_2,\dots ,z_{l+1})=g^{{\textbf{a}}}({\textbf{0}})+\sum _{i=2}^{l+1}h_i^{{\textbf{a}}}(z_{i+1},\dots ,z_{l+1})z_i+\sum _{i=2}^{l+1}k_i^{{\textbf{a}}}(z_i,\dots ,z_{l+1})z_i^2 \end{aligned}$$

for holomorphic functions \(\{h_i^{{\textbf{a}}}\}\) and \(\{k_i^{\textbf{a}}\}\) smoothly depending on \({\textbf{a}}.\) As a consequence, we have

$$\begin{aligned} g^{{\textbf{a}}}(z_1,z_2,\dots ,z_{l+1})=g^{{\textbf{a}}}({\textbf{0}})+\sum _{i=1}^{l+1}h_i^{{\textbf{a}}}(z_{i+1},\dots ,z_{l+1})z_i+\sum _{i=1}^{l+1}k_i^{{\textbf{a}}}(z_i,\dots ,z_{l+1})z_i^2. \end{aligned}$$

This completes the proof. \(\square \)

Proof of Lemma A.3

By doing the linear transformation \(({\textbf{z}},{\textbf{a}})\mapsto ({\textbf{z}}+{\textbf{c}}_{{\textbf{a}}},{\textbf{a}}),\) we may assume that \({\textbf{c}}_{{\textbf{a}}} = {\textbf{0}}\) for all \({\textbf{a}}\in D_{{\textbf{a}}}.\) Then by the Taylor Theorem, for each \({\textbf{a}}\in D_{{\textbf{a}}}\) and \({\textbf{z}} \in D_{{\textbf{z}}},\) we can write

$$\begin{aligned} f^{{\textbf{a}}} ({\textbf{z}}) = f^{{\textbf{a}}}({\textbf{0}})+ \sum _{i=1}^n z_i b^{{\textbf{a}}}_{i}({\textbf{z}}) \end{aligned}$$

for some holomorphic functions \(b^{{\textbf{a}}}_{i},\) \(i =1,\dots , n.\) Since \({\textbf{0}}\) is a critical point of \(f^{{\textbf{a}}},\) we have

$$\begin{aligned} b^{{\textbf{a}}}_{i}({\textbf{0}}) = \frac{\partial }{\partial z_i} f^{{\textbf{a}}} ({\textbf{0}}) = 0. \end{aligned}$$

As a result, by Taylor theorem again, we can write

$$\begin{aligned} f^{{\textbf{a}}} ({\textbf{z}}) = f^{{\textbf{a}}}({\textbf{0}})+ \sum _{i=1}^n z_i b^{\textbf{a}}_{i}({\textbf{z}}) = f^{{\textbf{a}}}({\textbf{0}})+\sum _{i, j=1}^n z_i z_j h^{{\textbf{a}}}_{ij}({\textbf{z}}) \end{aligned}$$

for some holomorphic functions \(h^{{\textbf{a}}}_{ij},\) \(i , j =1,\dots , n.\) Since

$$\begin{aligned} \sum _{i, j=1}^n z_i z_j h^{{\textbf{a}}}_{ij}({\textbf{z}}) = \sum _{i, j=1}^n z_i z_j \Big (\frac{h^{{\textbf{a}}}_{ij}({\textbf{z}}) + h^{{\textbf{a}}}_{ji}({\textbf{z}})}{2}\Big ), \end{aligned}$$

we may assume that \(h^{{\textbf{a}}}_{ij}\) is symmetric in i and j. Since \({\textbf{0}}\) is a non-degenerate critical point of \(f^{\textbf{a}},\) and

$$\begin{aligned} \frac{\partial ^2}{\partial z_i z_j} f^{{\textbf{a}}} ({\textbf{0}}) = 2h^{{\textbf{a}}}_{ij}({\textbf{0}}), \end{aligned}$$

we have \(\det (h^{{\textbf{a}}}_{ij}({\textbf{0}})) \ne 0.\)

Next, suppose for some m with \(0 \leqslant m \leqslant n,\) there exist an open set \(V_m \subset {\mathbb {C}}^n\) containing \({\textbf{0}},\) an open set \(A_m \subset D_{{\textbf{a}}}\) containing \({\textbf{a}}_0,\) and a smooth function \(\psi _m: V_m \times A_m \rightarrow {\mathbb {C}}^n\) such that, if we denote \(\psi ^{{\textbf{a}}}_m({\textbf{Z}}) = \psi _m(\textbf{Z}, {\textbf{a}}),\) then \(\psi ^{{\textbf{a}}}_m\) gives a holomorphic change of variable with

$$\begin{aligned} f^{{\textbf{a}}} (\psi ^{{\textbf{a}}}_m({\textbf{Z}}) ) = f^{{\textbf{a}}}({\textbf{0}})- Z_1^2 - \dots - Z_{m-1}^2 + \sum _{i,j = m}^n Z_i Z_j H^{{\textbf{a}}}_{m, ij} ({\textbf{Z}}) , \end{aligned}$$

where \(H^{{\textbf{a}}}_{m, ij} ({\textbf{Z}}) \) is holomorphic in \({\textbf{Z}}\) and symmetric in i and j. Based on this, we are going to find an open set \(V_{m+1}\) of \({\mathbb {C}}^n\) containing \({\textbf{0}},\) an open set \(A_{m+1} \subset A_m\) containing \(\textbf{a}_0,\) and a smooth function \(\psi _{m+1}: V_{m+1} \times A_{m+1} \rightarrow {\mathbb {C}}^n\) such that, if we denote \(\psi ^{{\textbf{a}}}_{m+1}(\textbf{Z}) = \psi _{m+1}({\textbf{Z}}, {\textbf{a}}),\) then \(\psi ^{\textbf{a}}_{m+1}\) gives a holomorphic change of variable with

$$\begin{aligned} f^{{\textbf{a}}} (\psi ^{{\textbf{a}}}_{m+1} ({\textbf{Z}}) ) = f^{{\textbf{a}}}({\textbf{0}})- Z_1^2 - \dots - Z_{m}^2 + \sum _{i,j = m+1}^n Z_i Z_j H^{{\textbf{a}}}_{m+1, ij} ({\textbf{Z}}) \end{aligned}$$

for some holomorphic functions \(H^{{\textbf{a}}}_{m+1, ij} ({\textbf{Z}})\) that are symmetric in i and j.

To do so, we by the Chain Rule have

$$\begin{aligned} \frac{\partial ^2 f^{{\textbf{a}}}}{\partial Z_i Z_j} (\psi ^{{\textbf{a}}}_m({\textbf{0}})) = (D \psi ^{{\textbf{a}}}_m ({\textbf{0}}))^T \Big (\frac{\partial ^2 f^{{\textbf{a}}}}{\partial z_i z_j} ({\textbf{0}}) \Big ) (D \psi ^{\textbf{a}}_m ({\textbf{0}})) , \end{aligned}$$

where \(D \psi ^{{\textbf{a}}}_m ({\textbf{0}})\) is the Jacobian matrix of \(\psi ^{{\textbf{a}}}_m\) at \({\textbf{0}}.\) Thus, we have

$$\begin{aligned} 2^{m-1}\det (2H^{{\textbf{a}}}_{m, ij}({\textbf{0}}))=\det \Big (\frac{\partial ^2 f^{{\textbf{a}}} }{\partial Z_i Z_j} (\psi ^{{\textbf{a}}}_m({\textbf{0}})) \Big )\ne 0, \end{aligned}$$

implying that \((H^{{\textbf{a}}}_{m, ij}({\textbf{0}}))\) is a \((n-m+1)\times (n-m+1)\) non-singular matrix. Therefore, there exists \(k \geqslant m\) such that \(H^{{\textbf{a}}}_{m, km}({\textbf{0}})\ne 0.\) Reordering the variables if necessary, we may assume that \(H^{{\textbf{a}}}_{m, mm}({\textbf{0}}) \ne 0.\) By continuity of \(H^{{\textbf{a}}}_{m, mm}({\textbf{Z}})\) in \({\textbf{Z}}\) and \({\textbf{a}},\) there exists an open set \(V'_m \subset V_m\) containing \({\textbf{0}}\) and an open set \(A'_m \subset A_m\) containing \({\textbf{a}}_0\) such that \(H^{{\textbf{a}}}_{m, mm}({\textbf{0}}) \ne 0\) for all \(({\textbf{Z}}, {\textbf{a}}) \in V'_m \times A'_m.\) Then we can let

$$\begin{aligned} {\widetilde{H}}^{{\textbf{a}}}_{m, ij}({\textbf{Z}}) = \frac{H^{{\textbf{a}}}_{m, ij}({\textbf{Z}})}{H^{{\textbf{a}}}_{m, mm}({\textbf{Z}})} \end{aligned}$$

and have

$$\begin{aligned} f^{{\textbf{a}}}(\psi ^{{\textbf{a}}}_m ({\textbf{Z}})) =&f^{\textbf{a}}({\textbf{0}}) -Z_1^2 - \dots - Z_{m-1}^2 + \sum _{i,j = m}^n Z_i Z_j H^{{\textbf{a}}}_{m, ij} ({\textbf{Z}}) \\ =&f^{{\textbf{a}}}({\textbf{0}}) -Z_1^2 - \dots -Z_{m-1}^2 + H^{{\textbf{a}}}_{m, mm}({\textbf{Z}})\sum _{i,j = m}^n Z_i Z_j {{\widetilde{H}}}^{{\textbf{a}}}_{m, ij}({\textbf{Z}}) \\ =&f^{{\textbf{a}}}({\textbf{0}}) -Z_1^2 - \dots -Z_{m-1}^2 + H^{\textbf{a}}_{m,mm}({\textbf{Z}})\Big ( Z_m + \sum _{j=m+1}^n Z_j \widetilde{H}^{{\textbf{a}}}_{m, mj} ({\textbf{Z}}) \Big )^2 \\&- H^{{\textbf{a}}}_{m,mm}({\textbf{Z}})\Big [\Big ( \sum _{j=m+1}^n Z_j {{\widetilde{H}}}^{{\textbf{a}}}_{m, mj} ({\textbf{Z}}) \Big )^2 + \sum _{i,j = m+1}^n Z_i Z_j {{\widetilde{H}}}^{{\textbf{a}}}_{m, ij}({\textbf{Z}}) \Big ]. \end{aligned}$$

Define \({\textbf{W}} ={\textbf{W}}({\textbf{Z}})\) by

$$\begin{aligned} W_l = Z_l \end{aligned}$$

for \(l \ne m,\) and

$$\begin{aligned} W_m = \sqrt{-H^{{\textbf{a}}}_{m,mm}({\textbf{Z}})} \Big ( Z_m + \sum _{j=m+1}^n Z_j {{\widetilde{H}}}^{{\textbf{a}}}_{m, mj} ({\textbf{Z}}) \Big ). \end{aligned}$$

We note that

$$\begin{aligned} \frac{\partial W_l}{\partial Z_k} ({\textbf{0}}) = \delta _{l,k} \end{aligned}$$

for \(l\ne m,\) and

$$\begin{aligned} \frac{\partial W_m}{\partial Z_k} ({\textbf{0}}) = \sqrt{-H^{\textbf{a}}_{mm}({\textbf{0}})} \Big ( \delta _{m,k} + \sum _{j=m+1}^n \delta _{j,k} {{\widetilde{H}}}^{{\textbf{a}}}_{m, mj} ({\textbf{0}}) \Big ). \end{aligned}$$

Then the Jacobian matrix \(DW({\textbf{0}})\) is an upper triangular matrix with the (mm)-th entry \(\sqrt{-H^{{\textbf{a}}}_{m,mm}({\textbf{0}})}\ne 0\) and all the other diagonal entries 1,  hence \(\det DW(\textbf{0})\ne 0.\)

Now consider the map \(G: V'_m \times A'_m \rightarrow {\mathbb {C}}^n \times {\mathbb {R}}^k\) defined by

$$\begin{aligned} G({\textbf{Z}}, {\textbf{a}}) = ({\textbf{W}}({\textbf{Z}}), {\textbf{a}}). \end{aligned}$$

Then the Jacobian matrix \(DG ({\textbf{0}}, {\textbf{a}}_0)\) is of the form

$$\begin{aligned} DG({\textbf{0}}, {\textbf{a}}_0) = \begin{pmatrix} DW({\textbf{0}}) &{} * \\ 0 &{} I_k \end{pmatrix}, \end{aligned}$$

where \(I_k\) is the \(k\times k\) identity matrix. Moreover, \(\det (DG({\textbf{0}}, {\textbf{a}}_0)) = \det (DW({\textbf{0}})) \ne 0.\) Thus, by the Inverse Function Theorem, there exists an open set \(V''_m\subset V'_m\) and an open subset with compact closure \(A_{m+1} \subset A'_m\) containing \({\textbf{a}}_0\) such that \(G: V''_{m} \times A_{m+1} \rightarrow {\mathbb {C}}^n \times A_m\) is a diffeomorphism to its image. By slightly shrinking \(A_{m+1}\) if necessary, \(G(V''_{m} \times A_{m+1})\) contains an open subset of the form \(V_{m+1}\times A_{m+1}.\) For each \({\textbf{a}}\in A_{m+1},\) let \(\psi ^{\textbf{a}}_{m+1} = \psi ^{{\textbf{a}}}_m \circ {\textbf{W}}^{-1}:V_{m+1}\rightarrow D_{{\textbf{z}}}.\) Then we have

$$\begin{aligned} f^{{\textbf{a}}}( \psi ^{{\textbf{a}}}_{m+1} ({\textbf{W}})) = f^{\textbf{a}}({\textbf{0}})-W_1^2 - \dots -W_{m}^2 + \sum _{i,j = m+1}^n W_i W_j H^{{\textbf{a}}}_{m+1, ij} ({\textbf{W}}) \end{aligned}$$

for some holomorphic functions \(H^{{\textbf{a}}}_{m+1, ij} ({\textbf{Z}})\) that are symmetric in i and j.

Inductively doing the above procedure on m,  and letting \(V=V_{n},\) \(A=A_{n}\) and \(\psi ^{{\textbf{a}}}=\psi ^{{\textbf{a}}}_n,\) we prove the result. Moreover, by the Chain Rule, we have

$$\begin{aligned} \textrm{Hess}( f^{{\textbf{a}}} \circ \psi ^{{\textbf{a}}})({\textbf{0}})) = (D \psi ^{{\textbf{a}}} ({\textbf{0}}))^T \Big (\textrm{Hess} (f^{\textbf{a}}) ({\textbf{0}}) \Big ) (D \psi ^{{\textbf{a}}} ({\textbf{0}})). \end{aligned}$$

Since \(\textrm{Hess}( f^{{\textbf{a}}} \circ \psi ^{{\textbf{a}}})(\textbf{0})\) is equal to the negative of the \(n\times n\) identity matrix, by taking the determinant on both sides, we get

$$\begin{aligned} \det \Big ( D (\psi ^{{\textbf{a}}})({\textbf{0}}) \Big ) = \frac{2^{\frac{n}{2}}}{\sqrt{- \det \textrm{Hess}(f^{\textbf{a}})({\textbf{0}})}}. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K.H., Yang, T. Relative Reshetikhin–Turaev Invariants, Hyperbolic Cone Metrics and Discrete Fourier Transforms I. Commun. Math. Phys. 400, 1019–1070 (2023). https://doi.org/10.1007/s00220-022-04613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04613-5

Navigation