Skip to main content
Log in

Integrability of the Zakharov-Shabat Systems by Quadrature

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the general two-dimensional Zakharov-Shabat systems, which appear in application of the inverse scattering transform (IST) to an important class of nonlinear partial differential equations (PDEs) called integrable systems. We study their integrability in the meaning of differential Galois theory, i.e., their solvability by quadrature. It becomes a key for obtaining analytical expressions for solutions to the PDEs by using the IST. For a wide class of potentials, we prove that they are integrable in that meaning if and only if the potentials are reflectionless. It is well known that for such potentials particular solutions called n-solitons in the original PDEs are yielded by the IST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ablowitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  2. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Inverse scattering transform–fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  6. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  7. Acosta-Humánez, P.B., Morales-Ruiz, J.J., Weil, J.-A.: Galoisian approach to integrability of Schrödinger equation. Rep. Math. Phys. 67, 305–374 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ayoul, M., Zung, N.T.: Galoisian obstructions to non-Hamiltonian integrability. C. R. Math. Acad. Sci. Paris 348, 1323–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer, New York (2000)

    MATH  Google Scholar 

  10. Blázquez-Sanz, D., Yagasaki, K.: Analytic and algebraic conditions for bifurcations of homoclinic orbits I: Saddle equilibria. J. Different. Equ. 253, 2916–2950 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Blázquez-Sanz, D., Yagasaki, K.: Galoisian approach for a Sturm-Liouville problem on the infinite interval. Methods Appl. Anal. 19, 267–288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  13. Crespo, T., Hajto, Z.: Algebraic Groups and Differential Galois Theory. American Mathematical Society, Providence, RI (2011)

    Book  MATH  Google Scholar 

  14. Deift, P., Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. 32, 121–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gu, C., Hu, H., Zhou, Z.: Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Springer, Dordrecht, The Netherlands (2005)

    Book  MATH  Google Scholar 

  16. Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations. American Mathematical Society, Providence, RI (2008)

    MATH  Google Scholar 

  17. Kobayashi K., Yagasaki K.: Singular solitary waves in the KdV equation: rational solitons, positons and negatons, in preparation

  18. Jiménez, S., Morales-Ruiz, J.J., Sánchez-Cauce, R., Zurro, M.-A.: Differential Galois theory and Darboux transformations for integrable systems. J. Geom. Phys. 115, 75–88 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lamb, G.L., Jr.: Elements of Soliton Theory. John Wiley and Sons, New York (1980)

    MATH  Google Scholar 

  20. Matveev, V.B.: Positons: Slowly decreasing analogues of solitons. Theoret. and Math. Phys. 131, 483–497 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morales-Ruiz J.J.: Differential Galois Theory and Non-Integrability of Hamiltonian Systems Birkhäuser, Basel,1999

  22. Morales-Ruiz, J.J., Peris, J.M.: On a Galoisian approach to the splitting of separatrices. Ann. Fac. Sci. Toulouse Math. 8, 125–141 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morales-Ruiz, J.J., Ramis, J.P.: Galosian obstructions to integrability of Hamiltonian systems. Methods Appl. Anal. 8, 33–96 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Newell, A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)

    Book  MATH  Google Scholar 

  25. Ohmiya, M.: The inverse scattering problem for the Dirac operator and the modified Korteweg-de Vries equation. Osaka J. Math. 16, 249–269 (1979)

    MathSciNet  MATH  Google Scholar 

  26. Olmedilla, E.: Multiple pole solutions of the nonlinear Schrödinger equation. Phys. D 25, 330–346 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Springer, New York (2003)

    MATH  Google Scholar 

  28. Tsuru, H., Wadati, M.: The multiple pole solutions of the sine-Gordon equation. J. Phys. Soc. Japan 53, 2908–2921 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Japan 51, 2029–2035 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yagasaki, K.: Horseshoes in two-degree-of-freedom Hamiltonian systems with saddle-centers. Arch. Ration. Mech. Anal. 154, 275–296 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yagasaki, K.: Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle centres. Nonlinearity 16, 2003–2012 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Yagasaki K.: Analytic and algebraic conditions for bifurcations of homoclinic orbits II: Reversible systems, J. Dynam. Differential Equations, to appear

  33. Yagasaki, K., Yamanaka, S.: Nonintegrability of dynamical systems with homo- and heteroclinic orbits. J. Differen. Equa. 263, 1009–1027 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Yagasaki, K., Yamanaka, S.: Heteroclinic orbits and nonintegrability in two-degree-of-freedom Hamiltonian systems with saddle-centers. SIGMA Symmetry Integrability Geom. Methods Appl. 15, 049 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    ADS  MathSciNet  Google Scholar 

  36. Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37, 823–828 (1973)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the JSPS KAKENHI Grant Number JP17H02859. The author thanks Katsuki Kobayashi for pointing out some errors in the computations of Sect. 4.2. He also appreciates the anonymous referees for their useful comments, which have improved this work.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Yagasaki.

Ethics declarations

Conflict of Interest

The author has no conflict of interest to disclose.

Additional information

Communicated by J. Gier

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Relations on Scattering and Reflection Coefficients between (1.1) and (2.6)

Following Sect. 3d of [24] basically, we define the scattering and reflection coefficients for (2.6) (see also Sect. 9.1 of [1]). Equation (2.6) has the Jost solutions

$$\begin{aligned} \begin{aligned}&{\hat{\phi }}(x;k)\sim e^{-ikx}\quad \text {as }x\rightarrow -\infty ,\\&{\hat{\psi }}(x;k)\sim e^{ikx}\quad \text {as }x\rightarrow +\infty . \end{aligned} \end{aligned}$$
(A.1)

Since

$$\begin{aligned} \begin{aligned}&{\hat{\phi }}(x;-k)\sim e^{ikx}\quad \text {as }x\rightarrow -\infty ,\\&{\hat{\psi }}(x;-k)\sim e^{-ikx}\quad \text {as }x\rightarrow +\infty , \end{aligned} \end{aligned}$$

we have the relations

$$\begin{aligned} \begin{aligned}&\phi (x;k)=-\frac{i}{2k}\begin{pmatrix} -{\hat{\phi }}_x(x;k)+ik {\hat{\phi }}(x;k)\\ {\hat{\phi }}(x;k) \end{pmatrix},\\&{\bar{\phi }}(x;k)=\begin{pmatrix} -{\hat{\phi }}_x(x;-k)+ik {\hat{\phi }}(x;-k)\\ {\hat{\phi }}(x;-k) \end{pmatrix},\\&\psi (x;k)=\begin{pmatrix} -{\hat{\psi }}_x(x;k)+ik {\hat{\psi }}(x;k)\\ {\hat{\psi }}(x;k) \end{pmatrix},\\&{\bar{\psi }}(x;k)=-\frac{i}{2k}\begin{pmatrix} -{\hat{\psi }}_x(x;-k)+ik {\hat{\psi }}(x;-k)\\ {\hat{\psi }}(x;-k) \end{pmatrix} \end{aligned} \end{aligned}$$
(A.2)

between the Jost solutions to (1.1) and (2.6) by (2.7). Define the scattering coefficients \({\hat{a}}(k)\) and \({\hat{b}}(k)\) for (2.6) as

$$\begin{aligned} {\hat{\phi }}(x;k)={\hat{a}}(k){\hat{\psi }}(x;-k)+{\hat{b}}(k){\hat{\psi }}(x;k) \end{aligned}$$
(A.3)

like (2.5). Since

$$\begin{aligned} {\hat{\phi }}(x;-k)={\hat{a}}(-k){\hat{\psi }}(x;k)+{\hat{b}}(-k){\hat{\psi }}(x;-k), \end{aligned}$$

we have

$$\begin{aligned} {\hat{a}}(k){\hat{a}}(-k)-{\hat{b}}(k){\hat{b}}(-k)=1 \end{aligned}$$
(A.4)

like (4.2). From (A.2) we obtain

$$\begin{aligned}&\phi (x;k)={\hat{a}}(k){\bar{\psi }}(x;k)-\frac{i}{2k}{\hat{b}}(k)\psi (x;k),\\&{\bar{\phi }}(x;k)={\hat{a}}(-k)\psi (x;k)+2ik{\hat{b}}(-k){\bar{\psi }}(x;k), \end{aligned}$$

which are compared with (2.5) to yield

$$\begin{aligned} a(k)={\hat{a}}(k),\quad {\bar{a}}(k)={\hat{a}}(-k),\quad b(k)=-\frac{i}{2k}{\hat{b}}(k),\quad {\bar{b}}(k)=2ik{\hat{b}}(-k). \end{aligned}$$
(A.5)

Moreover, for the reflection coefficients we have

$$\begin{aligned} \rho (k)=-\frac{i}{2k}{\hat{\rho }}(k),\quad {\bar{\rho }}(k)=2ik{\hat{\rho }}(-k), \end{aligned}$$
(A.6)

where \({\hat{\rho }}(k)={\hat{b}}(k)/{\hat{a}}(k)\).

Appendix B. Condition for the Simplicity of Zeros of

We consider the linear Schrödinger equation (2.6) and follow an approach in the proof of Theorem 1 of [14] to provide a necessary and sufficient condition for a zero of the scattering coefficient \({\hat{a}}(k)\) to be simple.

Let \({\hat{\phi }}(x;k),{\hat{\psi }}(x;k)\) be the Jost solutions satisfying (A.1). Since

$$\begin{aligned}{}[{\hat{\psi }}(x;k),{\hat{\psi }}(x;-k)] :={\hat{\psi }}_x(x,k){\hat{\psi }}(x;-k)-{\hat{\psi }}(x,k){\hat{\psi }}_x(x;-k)=2ik \end{aligned}$$

by (A.1), we have

$$\begin{aligned}{}[{\hat{\psi }}(x;k),{\hat{\phi }}(x;k)]=[{\hat{\psi }}(x,k),{\hat{a}}(k){\hat{\psi }}(x;-k)+{\hat{b}}(k){\hat{\psi }}(x;k)] =2ik{\hat{a}}(k) \end{aligned}$$

by (A.3). Hence,

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}k}(2ik{\hat{a}}(k)) =&\quad 2i{\hat{a}}(k)+2ik{\hat{a}}_k(k)\nonumber \\ =&\quad [{\hat{\psi }}_k(x;k),{\hat{\phi }}(x;k)]+[{\hat{\psi }}(x;k),{\hat{\phi }}_k(x;k)]. \end{aligned}$$
(B.1)

On the other hand, since \({\hat{\psi }}(x;k)\) is a solution to (2.6), we immediately have

$$\begin{aligned} {\hat{\psi }}_{kxx}(x;k)+q(x){\hat{\psi }}_k(x;k) =-k^2{\hat{\psi }}_k(x;k)-2k{\hat{\psi }}(x;k), \end{aligned}$$

so that

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}x}[{\hat{\psi }}_k(x;k),{\hat{\phi }}(x;k)]&= {\hat{\psi }}_{kxx}(x;k){\hat{\phi }}(x;k)-{\hat{\psi }}_k(x;k){\hat{\phi }}_{xx}(x;k)\nonumber \\&= -2k{\hat{\psi }}(x;k){\hat{\phi }}(x;k). \end{aligned}$$
(B.2)

Similarly, we have

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}x}[{\hat{\psi }}(x;k),{\hat{\phi }}_k(x;k)]=2k{\hat{\psi }}(x;k){\hat{\phi }}(x;k). \end{aligned}$$
(B.3)

Let \(k=k_0\) be a zero of \({\hat{a}}(k)\) with \(\textrm{Im}\,k_0>0\). Then by (A.1) and (A.3) we have

$$\begin{aligned} \lim _{x\rightarrow +\infty }{\hat{\psi }}_k(x;k_0){\hat{\phi }}(x;k_0)=0,\quad \lim _{x\rightarrow -\infty }{\hat{\psi }}(x;k_0){\hat{\phi }}_k(x;k_0)=0. \end{aligned}$$

Hence, it follows from (B.2) and (B.3) that

$$\begin{aligned}&[{\hat{\psi }}_k(x;k_0),{\hat{\phi }}(x;k_0)] =2k_0\int _x^\infty {\hat{\psi }}(x;k_0){\hat{\phi }}(x;k_0)\textrm{d}x,\\&[{\hat{\psi }}(x;k_0),{\hat{\phi }}_k(x;k_0)] =2k_0\int _{-\infty }^x{\hat{\psi }}(x;k_0){\hat{\phi }}(x;k_0)\textrm{d}x, \end{aligned}$$

which yield

$$\begin{aligned} i{\hat{a}}_k(k_0)=\int _{-\infty }^\infty {\hat{\psi }}(x;k_0){\hat{\phi }}(x;k_0)\textrm{d}x \end{aligned}$$

along with (B.1). Using (A.3), we have the following proposition.

Proposition B .4

The zero \(k=k_0\) of \({\hat{a}}(k)\) with \(\textrm{Im}\,k_0>0\) is simple if and only if

$$\begin{aligned} \int _{-\infty }^\infty {\hat{\psi }}(x;k_0)^2\textrm{d}x\ne 0. \end{aligned}$$
(B.4)

Remark B .5

Assume that q(x) is real on \(\mathbb {R}\) and let \(k=k_0\) be a zero of \({\hat{a}}(k)\). Then \(k_0\) is purely imaginary as stated in Remark 5.4(ii) and we can take a real function on \(\mathbb {R}\) as \({\hat{\psi }}(x;k_0)\), which is a solution to (2.6) with \(k=k_0\) such that \(\lim _{x\rightarrow {\pm } 0}w(x)=0\). Hence, condition (B.4) holds. Thus, any zero of \({\hat{\psi }}(x;k_0)\) is simple, as shown in [14].

Appendix C. Computation of , \(\ell \) = \(1,\ldots ,n\), in a Simple Case

We consider the linear Schrödinger equation (2.6) and compute \({\hat{N}}_\ell (x)\), \(\ell =1,\ldots ,n\), which were defined in Sect. 4.2, when the zeros \(k=k_j\), \(j=1,\ldots ,n\), of \({\hat{a}}(k)\) are all simple.

Substituting (4.11) into (4.10) and setting \(k=k_\ell \), we have

$$\begin{aligned} {\hat{N}}_\ell (x) =e^{2ik_\ell x}\biggl ( 1-\sum _{j=1}^n\frac{{\hat{C}}_j{\hat{N}}_j(x)}{k_\ell +k_j}\biggr ),\quad \ell =1,\ldots ,n, \end{aligned}$$
(C.1)

where

$$\begin{aligned} {\hat{C}}_j=\frac{{\hat{b}}(k_j)}{{\hat{a}}_k(k_j)},\quad j=1,\ldots ,n. \end{aligned}$$

Let

$$\begin{aligned}&\Delta (x)\\&=\begin{vmatrix} 1+(2k_1)^{-1}{\hat{C}}_1e^{2ik_1x}&(k_1+k_2)^{-1}{\hat{C}}_2e^{2ik_1x}&\cdots&(k_1+k_n)^{-1}{\hat{C}}_ne^{2ik_1x}\\ (k_2+k_1)^{-1}{\hat{C}}_1e^{2ik_2x}&1+(2k_2)^{-1}{\hat{C}}_2e^{2ik_2x}&\cdots&(k_2+k_n)^{-1}{\hat{C}}_ne^{2ik_2x}\\ \vdots&\vdots&\ddots&\vdots \\ (k_n+k_1)^{-1}{\hat{C}}_1e^{2ik_nx}&(k_n+k_1)^{-1}{\hat{C}}_2e^{2ik_nx}&\cdots&1+(2k_n)^{-1}{\hat{C}}_ne^{2ik_2x} \end{vmatrix} \end{aligned}$$

and let \(\Delta _\ell (x)\), \(\ell =1,\ldots ,n\), be the determinants of the matrices obtained by replacing the \(\ell \)th column of \(\Delta (x)\) with

$$\begin{aligned} \begin{pmatrix} e^{2ik_1x}\\ e^{2ik_2x}\\ \vdots \\ e^{2ik_nx} \end{pmatrix} \end{aligned}$$

Using Cramer’s rule, we represent the solution to the system of linear algebraic equations (C.1) as

$$\begin{aligned} {\hat{N}}_\ell (x)=\Delta _\ell (x)/\Delta (x),\quad \ell =1,\ldots ,n. \end{aligned}$$

In particular, \({\hat{N}}_\ell (x)\), \(\ell =1,\ldots ,n\), are rational functions of \(e^{2ik_jx}\), \(j=1,\ldots ,n\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagasaki, K. Integrability of the Zakharov-Shabat Systems by Quadrature. Commun. Math. Phys. 400, 315–340 (2023). https://doi.org/10.1007/s00220-022-04610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04610-8

Navigation