Skip to main content
Log in

Non-Holomorphic Cycles and Non-BPS Black Branes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study extremal non-BPS black holes and strings arising in M-theory compactifications on Calabi–Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we compute the black hole mass and black string tension, leading to a conjectural formula for the asymptotic volumes of connected, locally volume-minimizing representatives of non-holomorphic, even-dimensional homology classes in the threefold, without knowledge of an explicit metric. In the case of divisors we find examples where the volume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and leading to stable, non-BPS strings. We also compute the central charges of non-BPS strings in F-theory via a near-horizon \(AdS_3\) limit in 6d which, upon compactification on a circle, account for the asymptotic entropy of extremal non-supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal 2-cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Indices on \(t^I\) are raised and lowered with a Kronecker delta function, which we use for ease of presentation.

  2. We take n to be large, in which case the change in horizon moduli under the shift in black string charge is negligible.

  3. These line bundles are not themselves effective [49], but when combined with the hyperplanes they generate all effective line bundles.

  4. In this calculation we only consider the leading-order central charge and so do not include corrections to the field strength due to gravitational Chern-Simons terms.

References

  1. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99–104 (1996). arXiv:hep-th/9601029

    ADS  MathSciNet  MATH  Google Scholar 

  2. Arkani-Hamed, N., Motl, L., Nicolis, A., Vafa, C.: The String landscape, black holes and gravity as the weakest force. JHEP 06, 060 (2007). arXiv:hep-th/0601001

    ADS  MathSciNet  Google Scholar 

  3. Ferrara, S., Kallosh, R., Strominger, A.: N=2 extremal black holes. Phys. Rev. D 52, R5412–R5416 (1995). arXiv:hep-th/9508072

    ADS  MathSciNet  Google Scholar 

  4. Ferrara, S., Kallosh, R.: Supersymmetry and attractors. Phys. Rev. D 54, 1514–1524 (1996). arXiv:hep-th/9602136

    ADS  MathSciNet  MATH  Google Scholar 

  5. Ferrara, S., Kallosh, R.: Universality of supersymmetric attractors. Phys. Rev. D 54, 1525–1534 (1996). arXiv:hep-th/9603090

    ADS  MathSciNet  MATH  Google Scholar 

  6. Strominger, A.: Macroscopic entropy of N=2 extremal black holes. Phys. Lett. B 383, 39–43 (1996). arXiv:hep-th/9602111

    ADS  MathSciNet  Google Scholar 

  7. Gopakumar, R., Vafa, C.: M theory and topological strings. 1., arXiv:hep-th/9809187

  8. Gopakumar, R., Vafa, C.: M theory and topological strings. 2., arXiv:hep-th/9812127

  9. Katz, S.H., Klemm, A., Vafa, C.: M theory, topological strings and spinning black holes. Adv. Theor. Math. Phys. 3, 1445–1537 (1999). arXiv:hep-th/9910181

    MathSciNet  MATH  Google Scholar 

  10. Astefanesei, D., Goldstein, K., Jena, R.P., Sen, A., Trivedi, S.P.: Rotating attractors. JHEP 10, 058 (2006). arXiv:hep-th/0606244

    ADS  MathSciNet  Google Scholar 

  11. Brown, J.D., Henneaux, M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Cadavid, A.C., Ceresole, A., D’Auria, R., Ferrara, S.: Eleven-dimensional supergravity compactified on Calabi–Yau threefolds. Phys. Lett. B 357, 76–80 (1995). arXiv:hep-th/9506144

    ADS  MathSciNet  Google Scholar 

  13. de Wit, B., Lauwers, P.G., Van Proeyen, A.: Lagrangians of N=2 supergravity - matter systems. Nucl. Phys. B 255, 569–608 (1985)

    ADS  Google Scholar 

  14. Becker, K., Becker, M., Strominger, A.: Five-branes, membranes and nonperturbative string theory. Nucl. Phys. B 456, 130–152 (1995). arXiv:hep-th/9507158

    ADS  MATH  Google Scholar 

  15. de Wit, B., Van Proeyen, A.: Broken sigma model isometries in very special geometry. Phys. Lett. B 293, 94–99 (1992). arXiv:hep-th/9207091

    ADS  Google Scholar 

  16. Vafa, C.: Black holes and Calabi–Yau threefolds. Adv. Theor. Math. Phys. 2, 207–218 (1998). arXiv:hep-th/9711067

  17. Tripathy, P.K., Trivedi, S.P.: Non-supersymmetric attractors in string theory. JHEP 03, 022 (2006). arXiv:hep-th/0511117

  18. Larsen, F.: The attractor mechanism in five dimensions. Lect. Notes Phys. 755, 249–281 (2008). arXiv:hep-th/0608191

  19. Chou, A.S., Kallosh, R., Rahmfeld, J., Rey, S.-J., Shmakova, M., Wong, W.K.: Critical points and phase transitions in 5-D compactifications of M theory. Nucl. Phys. B 508, 147–180 (1997). arXiv:hep-th/9704142

  20. Ferrara, S., Gunaydin, M.: Orbits and Attractors for N=2 Maxwell-Einstein Supergravity Theories in Five Dimensions. Nucl. Phys. B 759, 1–19 (2006). arXiv:hep-th/0606108

    ADS  MathSciNet  MATH  Google Scholar 

  21. de Antonio Martin, A., Ortin, T., Shahbazi, C.S.: The FGK formalism for black p-branes in d dimensions. JHEP 05, 045 (2012). arXiv:1203.0260

    MathSciNet  MATH  Google Scholar 

  22. Meessen, P., Ortin, T., Perz, J., Shahbazi, C.S.: Black holes and black strings of N=2, d=5 supergravity in the H-FGK formalism. JHEP 09, 001 (2012). arXiv:1204.0507

    ADS  MathSciNet  MATH  Google Scholar 

  23. Andrianopoli, L., Ferrara, S., Marrani, A., Trigiante, M.: Non-BPS Attractors in 5d and 6d Extended Supergravity. Nucl. Phys. B 795, 428–452 (2008). arXiv:0709.3488

    ADS  MATH  Google Scholar 

  24. Ooguri, H., Vafa, C.: Non-supersymmetric AdS and the Swampland. Adv. Theor. Math. Phys. 21, 1787–1801 (2017). arXiv:1610.01533

    MathSciNet  MATH  Google Scholar 

  25. Demirtas, M., Long, C., McAllister, L., Stillman, M.: Minimal Surfaces and Weak Gravity. JHEP 03, 021 (2020). arXiv:1906.08262

    ADS  MathSciNet  MATH  Google Scholar 

  26. Kraus, P., Wilczek, F.: Self-interaction correction to black hole radiance. Nuclear Phys. B 433, 403–420 (1995)

    ADS  Google Scholar 

  27. Kraus, P., Wilczek, F.: Effect of self-interaction on charged black hole radiance. Nuclear Phys. B 437, 231–242 (1995)

    ADS  Google Scholar 

  28. Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042–5045 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Aalsma, L., van der Schaar, J.P.: Extremal Tunneling and Anti-de Sitter Instantons. JHEP 03, 145 (2018). arXiv:1801.04930

    ADS  MathSciNet  MATH  Google Scholar 

  30. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Almgren, F.J., Jr.: \(Q\) valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two. Bull. Amer. Math. Soc. (N.S.) 8, 327–328 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Micallef, M., Wolfson, J.: Area minimizers in a K3 surface and holomorphicity, arXiv Mathematics e-prints (May, 2005) arXiv:math/0505440

  33. Sen, A.: NonBPS states and Branes in string theory. In: Advanced School on Supersymmetry in the Theories of Fields, Strings and Branes, pp. 187–234, 1 (1999). arXiv:hep-th/9904207

  34. Lee, S.-J., Lerche, W., Weigand, T.: A stringy test of the scalar weak gravity conjecture. Nucl. Phys. B 938, 321–350 (2019). arXiv:1810.05169

    ADS  MathSciNet  MATH  Google Scholar 

  35. Heidenreich, B., Reece, M., Rudelius, T.: Repulsive forces and the weak gravity conjecture. JHEP 10, 055 (2019). arXiv:1906.02206

    ADS  MathSciNet  MATH  Google Scholar 

  36. Skauli, B.: Curve Classes on Calabi–Yau Complete Intersections in Toric Varieties, arXiv e-prints (2019). arXiv:1911.03146

  37. Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate studies in mathematics. American Mathematical Soc. (2011)

  38. Freedman, D.Z., Nunez, C., Schnabl, M., Skenderis, K.: Fake supergravity and domain wall stability. Phys. Rev. D 69, 104027 (2004). arXiv:hep-th/0312055

    ADS  MathSciNet  MATH  Google Scholar 

  39. Celi, A., Ceresole, A., Dall’Agata, G., Van Proeyen, A., Zagermann, M.: On the fakeness of fake supergravity. Phys. Rev. D 71, 045009 (2005). arXiv:hep-th/0410126

    ADS  MathSciNet  Google Scholar 

  40. Zagermann, M.: N=4 fake supergravity. Phys. Rev. D 71, 125007 (2005). arXiv:hep-th/0412081

    ADS  MathSciNet  Google Scholar 

  41. Skenderis, K., Townsend, P.K.: Hidden supersymmetry of domain walls and cosmologies. Phys. Rev. Lett. 96, 191301 (2006). arXiv:hep-th/0602260

    ADS  Google Scholar 

  42. Ceresole, A., Dall’Agata, G.: Flow Equations for Non-BPS Extremal Black Holes. JHEP 03, 110 (2007). arXiv:hep-th/0702088

    ADS  MathSciNet  Google Scholar 

  43. Gendler, N., Valenzuela, I.: Merging the weak gravity and distance conjectures using BPS extremal black holes. JHEP 01, 176 (2021). arXiv:2004.10768

    ADS  MathSciNet  MATH  Google Scholar 

  44. Haghighat, B., Murthy, S., Vafa, C., Vandoren, S.: F-theory, spinning black holes and multi-string branches. JHEP 01, 009 (2016). arXiv:1509.00455

    ADS  MathSciNet  MATH  Google Scholar 

  45. Couzens, C., Lawrie, C., Martelli, D., Schafer-Nameki, S., Wong, J.-M.: F-theory and \(\text{ AdS}_{3}\)/\(\text{ CFT}_{2}\). JHEP 08, 043 (2017). arXiv:1705.04679

    ADS  Google Scholar 

  46. Borcea, C.: Homogeneous vector bundles and families. Several Complex Variables and Complex Geometry, Part II 52, 83 (1991)

    MATH  Google Scholar 

  47. Arezzo, C., La Nave, G.: Minimal two spheres in kähler–Einstein Fano manifolds. Adv. Math. 191, 209–223 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Ottem, J.C.: Birational geometry of hypersurfaces in products of projective spaces, arXiv e-prints (2013). arXiv:1305.0537

  49. Constantin, A., Lukas, A.: Formulae for Line Bundle Cohomology on Calabi–Yau Threefolds. Fortsch. Phys. 67, 1900084 (2019). arXiv:1808.09992

    ADS  MathSciNet  Google Scholar 

  50. Demirtas, M., Long, C., McAllister, L., Stillman, M.: The Kreuzer–Skarke Axiverse. JHEP 04, 138 (2020). arXiv:1808.01282

    ADS  MathSciNet  Google Scholar 

  51. Maldacena, J.M., Strominger, A., Witten, E.: Black hole entropy in M theory. JHEP 12, 002 (1997). arXiv:hep-th/9711053

    ADS  MathSciNet  MATH  Google Scholar 

  52. Kraus, P., Larsen, F.: Microscopic black hole entropy in theories with higher derivatives. JHEP 09, 034 (2005). arXiv:hep-th/0506176

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Naomi Gendler, Liam McAllister, and John Stout for useful discussions. The work of C.L. was partially supported by the Alfred P. Sloan Foundation Grant No. G-2019-12504 and by DOE Grant DE-SC0013607. The work of of A. S. was partially supported by the US grants: NSF DMS-1607871, NSF DMS-1306313, Simons 38558, as well as Laboratory of Mirror Symmetry NRU HSE, RF Government grant, ag. No 14.641.31.0001. The research of C.V. was partially supported by the National Science Foundation under Grant No. NSF PHY-2013858 and by a grant from the Simons Foundation (602883, CV). The work of S.-T. Y. was partially supported by the US grants: NSF DMS-0804454, NSF PHY1306313, and Simons Foundation 38558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artan Sheshmani.

Additional information

Communicated by Horng-Tzer Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, C., Sheshmani, A., Vafa, C. et al. Non-Holomorphic Cycles and Non-BPS Black Branes. Commun. Math. Phys. 399, 1991–2043 (2023). https://doi.org/10.1007/s00220-022-04587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04587-4

Navigation