Skip to main content
Log in

Random Walk on Nonnegative Integers in Beta Distributed Random Environment

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider random walks on the nonnegative integers in a space-time dependent random environment. We assume that transition probabilities are given by independent \(\textrm{Beta}(\mu ,\mu )\) distributed random variables, with a specific behaviour at the boundary, controlled by an extra parameter \(\eta \). We show that this model is exactly solvable and prove a formula for the mixed moments of the random heat kernel. We then provide two formulas that allow us to study the large-scale behaviour. The first involves a Fredholm Pfaffian, which we use to prove a local limit theorem describing how the boundary parameter \(\eta \) affects the return probabilities. The second is an explicit series of integrals, and we show that non-rigorous critical point asymptotics suggest that the large deviation behaviour of this half-space random walk in random environment is the same as for the analogous random walk on \({\mathbb {Z}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Pfaffian schur processes and last passage percolation in a half-quadrant. Ann. Probab. 46(6), 3015–3089 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1–65 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Baik, J., Rains, E.M.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109(2), 205–281 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Balázs, M., Rassoul-Agha, F., Seppäläinen, T.: Large deviations and wandering exponent for random walk in a dynamic beta environment. Ann. Probab. 47(4), 2186–2229 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Barraquand, G., Borodin, A., Corwin, I.: Half-space Macdonald processes. Forum of Mathematics, Pi (2020)

  6. Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process. Duke Math. J. 167(13), 2457–2529 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Barraquand, G., Corwin, I.: Random-walk in beta-distributed random environment. Probab. Theory Rel. Fields 167(3), 1057–1116 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Barraquand, G., Le Doussal, P.: Moderate deviations for diffusion in time dependent random media. J. Phys. A: Math. Theor. 53(21), 215002 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Barraquand, G., Rychnovsky, M.: Large deviations for sticky Brownian motions. Electr. J. Probab. 25, 1–52 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Barraquand, G., Wang, S.: An identity in distribution between full-space and half-space log-gamma polymers. arXiv preprint arXiv:2108.08737 (2021)

  11. Betea, D., Bouttier, J., Nejjar, P., Vuletić, M.: The free boundary Schur process and applications i. Ann. Henri Poincaré 19(12), 3663–3742 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Boldrighini, C., Minlos, R.A., Pellegrinotti, A.: Almost-sure central limit theorem for directed polymers and random corrections. Commun. Math. Phys. 189(2), 533–557 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Boldrighini, C., Minlos, R.A., Pellegrinotti, A.: Central limit theorem for a random walk in dynamical environment: integral and local. Theor. Stoch. Processes 5(21), 3–4 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Boldrighini, C., Minlos, R.A., Pellegrinotti, A.: Random walks in a random (fluctuating) environment. Russ. Math. Surv. 62(4), 663 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Borodin, A., Bufetov, A., Corwin, I.: Directed random polymers via nested contour integrals. Ann. Phys. 368, 191–247 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Rel. Fields 158(1), 225–400 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. Ann. Probab. 42(6), 2314–2382 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. Selecta Math. 24(2), 751–874 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Borodin, A., Rains, E.M.: Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121(3–4), 291–317 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Bouchet, E., Sabot, C., Santos, R.S.: A quenched functional central limit theorem for random walks in random environments under \((T)_\gamma \). Stoch. Proc. Appl. 126(4), 1206–1225 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Brockington, D., Warren, J.: The Bethe ansatz for sticky Brownian motions. arXiv preprint arXiv:2104.06482 (2021)

  23. Bérard, J.: The almost sure central limit theorem for one-dimensional nearest-neighbour random walks in a space-time random environment. J. Appl. Probab. 41(1), 83–92 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Corwin, I.: The q-Hahn boson process and q-Hahn TASEP. Int. Math. Res. Not. 2015(14), 5577–5603 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Corwin, I., Gu, Y.: Kardar–Parisi–Zhang equation and large deviations for random walks in weak random environments. J. Stat. Phys. 166(1), 150–168 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651–700 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Deuschel, J.-D., Guo, X.: Quenched local central limit theorem for random walks in a time-dependent balanced random environment. arXiv preprint arXiv:1710.05508 (2017)

  28. Dimitrov, E.: Two-point convergence of the stochastic six-vertex model to the airy process. arXiv preprint arXiv:2006.15934 (2020)

  29. Dunlap, A., Gu, Y.: A quenched local limit theorem for stochastic flows. arXiv preprint arXiv:2105.07907 (2021)

  30. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (2008)

    MATH  Google Scholar 

  31. Howitt, C., Warren, J.: Consistent families of Brownian motions and stochastic flows of kernels. Ann. Probab. 37(4), 1237–1272 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Kardar, M., Parisi, G., Zhang, Y.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    ADS  MATH  Google Scholar 

  33. Korotkikh, S.: Hidden diagonal integrability of \( q \)-Hahn vertex model and Beta polymer model. arXiv preprint arXiv:2105.05058 (2021)

  34. Le Jan, Y., Lemaire, S.: Products of Beta matrices and sticky flows. Probab. Theory Rel. Fields 130(1), 109–134 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Macdonald, I. G.: Symmetric Functions and Hall Polynomials, Vol. 354. Clarendon Press Oxford, (1995)

  36. Mangazeev, V.V., Lu, X.: Boundary matrices for the higher spin six vertex model. Nucl. Phys. B 945, 114665 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Mucciconi, M., Petrov, L.: Spin \(q\)-Whittaker polynomials and deformed quantum Toda. arXiv preprint arXiv:2003.14260 (2020)

  38. Nguyen, V., Zygouras, N.: Variants of geometric RSK, geometric PNG, and the multipoint distribution of the log-gamma polymer. Int. Math. Res. Not., page rnw145, (2016)

  39. O’Connell, N., Seppäläinen, T., Zygouras, N.: Geometric RSK correspondence, Whittaker functions and symmetrized random polymers. Invent. Math. 197(2), 361–416 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Oviedo, G., Panizo, G., Ramírez, A. F.: Second order fluctuations of large deviations for perturbed random walks. arXiv preprint arXiv:2108.02877 (2021)

  41. Petrov, L.: Parameter permutation symmetry in particle systems and random polymers. SIGMA 17, 21–34 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Povolotsky, A.M.: On the integrability of zero-range chipping models with factorized steady states. J. Phys. A: Math. Theor. 46(46), 465205 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Rains, E. M.: Correlation functions for symmetrized increasing subsequences. arXiv:math/0006097 (2000)

  44. Rassoul-Agha, F., Seppäläinen, T.: An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Rel. Fields 133(3), 299–314 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Rassoul-Agha, F., Seppäläinen, T.: Quenched point-to-point free energy for random walks in random potentials. Probab. Theory Rel. Fields 158(3–4), 711–750 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Rosengren, H.: A non-commutative binomial formula. J. Geom. Phys. 32(4), 349–363 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Schertzer, E., Sun, R., Swart, J.M.: Stochastic flows in the Brownian web and net. Memoirs Amer. Math. Soc. 227(1065), 1–172 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Simon, B.: Trace ideals and their applications, volume 120. Amer. Math. Soc. (2005)

  49. Thiery, T., Le Doussal, P.: Exact solution for a random walk in a time-dependent 1D random environment: the point-to-point Beta polymer. J. Phys. A: Math. Theor. 50(4), 045001 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Tracy, C.A., Widom, H.: A Fredholm determinant representation in ASEP. J. Stat. Phys. 132(2), 291–300 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Tricomi, F.G., Erdélyi, A.: The asymptotic expansion of a ratio of gamma functions. Pac. J. Math. 1(1), 133–142 (1951)

    MathSciNet  MATH  Google Scholar 

  53. Venkateswaran, V.: Symmetric and nonsymmetric Hall-Littlewood polynomials of type BC. J. Algebr. Comb. 42, 331–364 (2015)

    MATH  Google Scholar 

  54. Yilmaz, A., Zeitouni, O.: Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three. Comm. Math. Phys. 300(1), 243–271 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G.B. thanks Yu Gu and Alex Dunlap for a useful discussion about local central limit theorems, and in particular for drawing our attention to the reference [BMP99]. This article is based upon work supported by the National Science Foundation under Grant No. DMS-1928930 while G.B. participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2021 semester. M.R. was partially supported by the Fernholz Foundation and the NSF Grant No. DMS-1664650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Barraquand.

Ethics declarations

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by H. Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Pfaffians and Fredholm Pfaffians

In this section we provide some background on the notions of Pfaffians and Fredholm Pfaffians, and give conditions for them to be well-defined. The Pfaffian of a skew-symmetric \(2k\times 2k\) matrix \(A=(a_{i,j})_{i,j=1}^{2k}\) is defined by

$$\begin{aligned} \textrm{Pf}(A) = \frac{1}{2^k k!} \sum _{\sigma \in S_{2k}} \prod _{i=1}^k a_{\sigma (2k-1)}a_{\sigma (2k)}, \end{aligned}$$
(A.1)

and has the property that \(\det (A)=\textrm{Pf}(A)^2\). The notion of Fredholm Pfaffian was introduced in [Rai00], as an analogue of the Fredholm determinant. Recall that given a measure space \(({\mathbb {X}}, \mu )\) and a kernel \(K:{\mathbb {X}}\times {\mathbb {X}}\rightarrow {\mathbb {R}}\), we define the Fredholm determinant \(\det (I+K)_{L^2({\mathbb {X}},d\mu )}\) (we will omit the reference measure \(d\mu \) when considering the Lebesgue measure on a subset of \({\mathbb {R}}^n\) or when considering the measure \(\frac{1}{2{\textbf{i}}\pi }dz\) on a contour of the complex plane, which is the case in this paper) by the series expansion

$$\begin{aligned} \det (I+K)_{L^2({\mathbb {X}},\mu )} = 1+\sum _{k=1}^{+\infty } \frac{1}{k!} \int _{{\mathbb {X}}}d\mu (x_1) \dots \int _{{\mathbb {X}}}d\mu (x_k) \det \left( K(x_i,x_j) \right) _{i,j=1}^k,\nonumber \\ \end{aligned}$$
(A.2)

provided the right-hand-side is a convergent series (see [Sim05] for a more general definition). When proving that such expansions are bounded, one often uses Hadamard’s bound: for a \(k\times k\) matrix M such that \(\vert m_{i,j}\vert \leqslant a_ib_j\) for all \(1\leqslant i,j\leqslant k\),

$$\begin{aligned} \vert \det (M)\vert \leqslant k^{k/2} \prod _{i=1}^ka_ib_i. \end{aligned}$$
(A.3)

Consider now a skew-symmetric, matrix-valued kernel

$$\begin{aligned} K(x,y) = \begin{pmatrix} K_{11}(x,y) &{} K_{12}(x,y) \\ K_{21}(x,y ) &{} K_{22}(x,y) \end{pmatrix},\;\; x,y\in {\mathbb {X}}. \end{aligned}$$

The Fredholm Pfaffian of K, denoted \(\textrm{Pf}(J+K)_{L^2({\mathbb {X}}\times \lbrace 1,2\rbrace , d\mu )}\) (again, we will often omit the reference measure \(d\mu \)), is defined by the series expansion

$$\begin{aligned} \textrm{Pf}(J+K)_{L^2({\mathbb {X}}\times \lbrace 1,2\rbrace , d\mu )} =1+ \sum _{k=1}^{+\infty } \frac{1}{k!} \int _{{\mathbb {X}}}d\mu (x_1) \dots \int _{{\mathbb {X}}}d\mu (x_k) \textrm{Pf}\left( K(x_i,x_j) \right) _{i,j=1}^k, \nonumber \\ \end{aligned}$$
(A.4)

provided the series converges.

Lemma A.1

Let \(K:{\mathbb {X}}\times X\rightarrow {\mathbb {R}}\) be a \(2\times 2\) matrix valued skew symmetric kernel. Assume that there exist functions \(f_{11}, f_{12}, f_{22}\in L^2({\mathbb {X}}, d\mu )\) such that for all \(x,y\in {\mathbb {X}}\),

$$\begin{aligned} \vert K_{11}(x,y) \vert \leqslant f_{11}(x), \; \vert K_{12}(x,y)\vert \leqslant f_{12}(x), \; \vert K_{22}(x,y)\vert \leqslant f_{22}(y). \end{aligned}$$

Then, the Fredholm Pfaffian expansion of \(\textrm{Pf}(J+K)_{L^2({\mathbb {X}}\times \lbrace 1,2\rbrace , d\mu )}\) in (A.4) is convergent.

Moreover, if a sequence of \(2\times 2\) matrix valued skew symmetric kernels \(K^{(n)}\) converges pointwise to K as n goes to infinity, and for all \(x,y\in {\mathbb {X}}\) we have the bounds (uniformly in n)

$$\begin{aligned} \vert K^{(n)}_{11}(x,y) \vert \leqslant f_{11}(x),\; \vert K^{(n)}_{12}(x,y)\vert \leqslant f_{12}(x),\; \vert K^{(n)}_{22}(x,y)\vert \leqslant f_{22}(y), \end{aligned}$$

then

$$\begin{aligned} \lim _{n\rightarrow +\infty } \textrm{Pf}(J+K^{(n)})_{L^2({\mathbb {X}}\times \lbrace 1,2\rbrace , d\mu )} = \textrm{Pf}(J+K)_{L^2({\mathbb {X}}\times \lbrace 1,2\rbrace , d\mu )}. \end{aligned}$$
(A.5)

Proof

In the series expansion (A.4), we use the fact that

$$\begin{aligned} \left| \textrm{Pf}\left( K(x_i,x_j) \right) _{i,j=1}^k \right| = \sqrt{\left| \det \left( K(x_i,x_j) \right) _{i,j=1}^k \right| }, \end{aligned}$$

which, using Hadamard’s bound (A.3), is bounded by

$$\begin{aligned} (2k)^{k/2} \prod _{i=1}^k f_{11}(x_i)f_{12}(x_i)f_{12}(y_i)f_{22}(y_i). \end{aligned}$$

Using Cauchy-Schwarz inequality, and the fact that \(f_{11}, f_{12}, f_{13}\in L^2({\mathbb {X}}, d\mu )\), yields that the series expansion in (A.4) is bounded by

$$\begin{aligned} \sum _{k=0}^{+\infty } \frac{1}{k!} \left( \Vert f_{11}\Vert _2 \Vert f_{12}\Vert _2^2 \Vert f_{22} \Vert _2 \right) ^{k/4} (2k)^{k/2}, \end{aligned}$$

which is finite. The convergence (A.5) then follows from applying the dominated convergence theorem in the integrals and the series. \(\quad \square \)

Appendix B: Local Limit Theorem for the Full-space Beta RWRE

Let us start by recalling a formula for the moments of \({\textsf{P}}^{{\mathbb {Z}}}(x,0)\), defined in (1.12). For \(x_1\geqslant \dots \geqslant x_k\) with \(t+x_i\) even, we have

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ \textsf{P}^{{\mathbb {Z}}}_{0,t}(x_1,0)\dots \textsf{P}^{{\mathbb {Z}}}_{0,t}(x_k,0)\right] \nonumber \\{} & {} \quad = (\alpha +\beta )_k \int _{\gamma _1} \frac{dz_1}{2 \pi {\textbf{i}}}\dots \int _{\gamma _k} \frac{dz_k}{2 \pi {\textbf{i}}} \prod _{1 \leqslant a< b \leqslant k} \nonumber \\{} & {} \qquad \times \frac{z_a-z_b}{z_a-z_b-1} \prod _{i=1}^k \left( \frac{(\alpha +z_i)^2}{z_i(z_i+\alpha +\beta )} \right) ^{t/2} \left( \frac{z_i+\alpha +\beta }{z_i} \right) ^{\frac{x_i}{2}+1} \frac{1}{(z_i+\alpha +\beta )^2}, \end{aligned}$$
(B.1)

where the contours \(\gamma _1, \dots , \gamma _k\) all contain 0, exclude \(-\alpha -\beta \), and are nested in such a way that \(\gamma _i\) contains \(\gamma _j+1\) for all \(1\leqslant i<j\leqslant k\). This formula is a variant of the moment formula from [BC17, Proposition 1.11], given in [TLD16], see also [CG17, (3.1)]. We may deform the contours to become a vertical line \(\eta +{\textbf{i}}{\mathbb {R}}\), with \(-\alpha -\beta<\eta <0\). Once the contours are all the same, using the symmetrization identity

$$\begin{aligned} \sum _{\sigma \in S_k} \sigma \left( \prod _{a<b} \frac{z_a-z_b-1}{z_a-z_b} \right) = k!, \end{aligned}$$
(B.2)

we obtain that

$$\begin{aligned} {\mathbb {E}}\left[ \textsf{P}^{{\mathbb {Z}}}_{0,t}(x,0)^k\right] = (\alpha +\beta )_k \int _{\eta +{\textbf{i}}{\mathbb {R}}} \frac{dz_1}{2 \pi {\textbf{i}}}\dots \int _{\eta +{\textbf{i}}{\mathbb {R}}} \frac{dz_k}{2 \pi {\textbf{i}}} \det \left( \frac{1}{z_i-z_j-1} \right) _{i,j=1}^k \prod _{i=1}^k f_{t,x}(z_i),\nonumber \\ \end{aligned}$$
(B.3)

where

$$\begin{aligned} f_{t,x}(z) = \left( \frac{(\alpha +z)^2}{z(z+\alpha +\beta )} \right) ^{t/2} \left( \frac{z+\alpha +\beta }{z} \right) ^{\frac{x}{2}+1} \frac{1}{(z+\alpha +\beta )^2}. \end{aligned}$$

We refer to [BC14, Proposition 3.2.2] for similar type of derivations of determinantal formulas. We may now take the generating series to compute the Hankel transform, and obtain

$$\begin{aligned} {\mathbb {E}}\left[ F_{\alpha +\beta }(\zeta \textsf{P}^{{\mathbb {Z}}}_{0,t}(x,0))\right] = \det (I+\zeta L)_{L^2(\eta +{\textbf{i}}{\mathbb {R}})}, \end{aligned}$$
(B.4)

where the kernel L is given by

$$\begin{aligned} L(z,z') = \frac{1}{z-z'-1}f_{t,x}(z,z'). \end{aligned}$$

Let us consider the scalings and changes of variables

$$\begin{aligned} \zeta ={\tilde{\zeta }}\sqrt{t}, \,\; x=\frac{\beta -\alpha }{\beta +\alpha }t+{\tilde{x}}\sqrt{t},\;\; z=\frac{\sqrt{2t \alpha \beta }}{{\tilde{z}}},\;\; z'=\frac{\sqrt{2t \alpha \beta }}{{\tilde{z}}'}. \end{aligned}$$
(B.5)

Under these scalings, we see—the computations are similar as in Sect. 4.4—that we have the pointwise convergence of the kernel

$$\begin{aligned} \sqrt{t}L(z,z') \xrightarrow [t\rightarrow \infty ]{} L^{\infty }({\tilde{z}}, {\tilde{z}}'):= \mathbb {1}_{{\tilde{z}}={\tilde{z}}'} \frac{1}{\sqrt{2\alpha \beta }} \exp \left( \frac{{\tilde{z}}^2}{2}+\frac{x{\tilde{z}}}{\sigma }\right) , \end{aligned}$$

where \(\sigma \) is as in Proposition 1.13. Furthermore, the kernel can be bounded in a way similar as in (4.34), that is, there exist constants \(c, c'>0\) such that

$$\begin{aligned} \left| L(z,z')\frac{\mathrm d z}{\mathrm d {\tilde{z}}}\right| \leqslant \left| \frac{c}{c'-{\tilde{z}}^2}\right| , \end{aligned}$$

where we recall that \(g_{\sigma }\) is the density function of the Gaussian distribution with variance \(\sigma ^2= \frac{4\alpha \beta }{(\alpha +\beta )^2}\), as in the statement of Proposition 1.13. Thus, we may apply dominated convergence in the Fredholm determinant expansion. We find that

$$\begin{aligned} \det (I+\zeta L)_{L^2(\eta +{\textbf{i}}{\mathbb {R}})} \xrightarrow [t\rightarrow \infty ]{} \det (I+{\tilde{\zeta }} L^{\infty })_{L^2({\textbf{i}}{\mathbb {R}})} =\exp \left( {\tilde{\zeta }} \int _{{\textbf{i}}{\mathbb {R}}} \frac{dz}{2{\textbf{i}}\pi } L^{\infty }(z,z)\right) = \exp \left( \frac{{\tilde{\zeta }} g_{\sigma }({\tilde{x}}) }{\alpha +\beta }\right) . \end{aligned}$$

Using (B.4) and Proposition 4.5, this shows that under the scalings (B.5)

which concludes the proof of Proposition 1.13.

Appendix C: Critical Point Asymptotics

In this Section, we show that a critical point (non-rigorous) asymptotic analysis of the formula from Proposition 1.9 yields the statement from Conjecture 1.16.

All constants arising in the asymptotic analysis take the simplest possible form when they are written as functions of a real number \(\theta >\mu \), which corresponds to the location of the critical point in the asymptotic analysis below. We start with setting \(\zeta _t(y)=e^{t a_{\theta } -t^{1/3} b_{\theta } y}\), as in Lemma 4.6, where the constants \(a_{\theta }, b_{\theta }\) will be the same as in Conjecture 1.16, and we explain below how these constants were determined. We may restate Proposition 1.9, gathering all factors depending on t, as

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ F_{\mu +\eta } \left( -\zeta _t(y) {\textsf{P}}_{0,2t}(x_{\theta }t,1)/4 \right) \right] \nonumber \\{} & {} \quad = 1+\sum _{\ell =1}^{\infty } \frac{1}{\ell !} \int _{\frac{1}{2}+e^{-{\textbf{i}}\pi /3} \infty }^{\mu +\frac{1}{2} +e^{{\textbf{i}}\pi /3} \infty } \frac{d z_1}{2 \pi {\textbf{i}}} \dots \int _{\mu +\frac{1}{2}+e^{- {\textbf{i}}\pi /3} \infty }^{\mu +\frac{1}{2}+e^{{\textbf{i}}\pi /3} \infty } \frac{d z_{\ell }}{2 \pi {\textbf{i}}} \nonumber \\{} & {} \qquad \oint _{\gamma } \frac{dw_1}{2 \pi {\textbf{i}}} \dots \oint _{\gamma } \frac{d w_{\ell }}{2 \pi {\textbf{i}}} \nonumber \\{} & {} \qquad \prod _{i=1}^{\ell } \frac{\pi }{\sin (\pi (w_i-z_i))} \det \left[ \frac{1}{z_i-w_j} \right] _{i,j=1}^{\ell } \prod _{1 \leqslant i <j \leqslant \ell } \frac{\Gamma (z_i+w_j) \Gamma (w_i+z_j)}{\Gamma (w_i+w_j) \Gamma (z_i+z_j)} \nonumber \\{} & {} \qquad \times \prod _{i=1}^{\ell }\frac{ \Gamma (z_i+w_i)}{ \Gamma (2w_i)} \frac{ \Gamma (\eta +w_i) \Gamma (\mu +w_i) \Gamma (w_i-\mu )}{ \Gamma (\eta +z_i) \Gamma (z_i+\mu ) \Gamma (z_i-\mu )}e^{t(F(z_i) -F(w_i))- t^{1/3} by(z_i-w_i)}.\nonumber \\ \end{aligned}$$
(C.1)

where \(F(z)=G(z)+za_{\theta }\) and the function G is defined as in (1.19). Choosing

$$\begin{aligned} x_{\theta }=\frac{2 \psi _1(\theta )-\psi _1(\theta +\mu )-\psi _1(\theta -\mu )}{\psi _1(\theta +\mu )-\psi _1(\theta -\mu )}, \qquad a_{\theta }=-G'(\theta ), \end{aligned}$$

as in Conjecture 1.16 implies that \(\theta \) is is a double critical point of the function F, i.e. \(F'(\theta )=F''(\theta )=0\), so that by Taylor expansion,

$$\begin{aligned} F(z) = b_{\theta }^3 \frac{(z-\theta )^3}{3}+O\left( (z-\theta )^4\right) ,\end{aligned}$$
(C.2)

where \(b_{\theta }\) is defined in Conjecture 1.16. Fix some \(\theta >\mu \), and let us assume that we may deform the contours for the variables \(w_i\) (resp. for the variables \(z_i\)) to some contour \({\mathcal {C}}\) (resp. some contour \({\mathcal {D}}\)) going through \(\theta \), in such a way that \(z\mapsto \mathfrak {Re}[G(z)]\) attains its minimum (resp. maximum) along \({\mathcal {C}}\) (resp. \({\mathcal {D}}\)) precisely at \(z=\theta \). We further assume that \(z\mapsto \mathfrak {Re}[G(z)]\) grows (resp. decays) sufficiently fast as \(\vert z-\theta \vert \) increases. Then, we may approximate the integrals in (C.1) by their contribution in a neighborhood of \(\theta \). This is the principle of Laplace’s method/steep descent analysis. Given the Taylor expansion (C.2), it is natural to rescale variables as

$$\begin{aligned} z_i=\theta +b_{\theta }^{-1} t^{-1/3}{\tilde{z}}_i, \qquad w_i=\theta +b_{\theta }^{-1} t^{-1/3} {\tilde{w}}_i, \end{aligned}$$

and we will call \(\widetilde{{\mathcal {C}}}, \widetilde{{\mathcal {D}}}\) the rescaled contours. Under this change of variables, we have

$$\begin{aligned} tF(z_i) -t^{1/3} b_{\theta } yz_i =\frac{{\tilde{z}}_i^3}{3} -{\tilde{z}}_i y + O(t^{-1/3}). \end{aligned}$$

The other factors in (C.1) can be approximated as well, and taking into account some simplifications, one arrives at

$$\begin{aligned}{} & {} \lim _{t\rightarrow \infty } {\mathbb {E}}\left[ F_{\mu +\eta } \left( -\zeta _t(y) {\textsf{P}}_{0,2t}(x_{\theta }t,1)/4 \right) \right] \nonumber \\{} & {} \quad =1+\sum _{\ell =1}^{\infty } \int _{\widetilde{{\mathcal {C}}}}\frac{d{\tilde{w}}_1}{2{\textbf{i}}\pi } \dots \int _{\widetilde{{\mathcal {C}}}}\frac{d{\tilde{w}}_{\ell }}{2{\textbf{i}}\pi } \int _{\widetilde{{\mathcal {D}}}}\frac{d{\tilde{z}}_1}{2{\textbf{i}}\pi } \dots \int _{\widetilde{{\mathcal {D}}}}\frac{d{\tilde{z}}_{\ell }}{2{\textbf{i}}\pi } \det \left[ \frac{1}{{\tilde{z}}_i-{\tilde{w}}_j} \right] \prod _{i=1}^{\ell } \frac{1}{{\tilde{w}}_i-{\tilde{z}}_i} \frac{e^{\frac{{\tilde{z}}_i^3}{3}-y {\tilde{z}}_i}}{e^{\frac{{\tilde{w}}_i^3}{3}-y {\tilde{w}}_i}}.\nonumber \\ \end{aligned}$$
(C.3)

It is plausible that the contour \(\widetilde{{\mathcal {C}}}\) (resp. \(\widetilde{{\mathcal {D}}}\)) can be deformed to become the union of two semi infinite rays going to infinity in directions \(e^{\pm 2{\textbf{i}}\pi /3} \) (resp. \(e^{\pm {\textbf{i}}\pi /3} \)), in such a way that \(\widetilde{{\mathcal {C}}}\) and \(\widetilde{{\mathcal {D}}}\) do not intersect. Then, the right hand side of (C.3) would be exactly the Fredholm determinant expansion (see (A.2)) of the Tracy–Widom GUE distribution

$$\begin{aligned} F_\textrm{GUE}(y):= \det (I-K_{\textrm{Ai}})_{L^2(y,+\infty )}, \end{aligned}$$
(C.4)

where the Airy kernel is defined by

$$\begin{aligned} K_{\textrm{Ai}}(x,y) = \int _{\widetilde{{\mathcal {C}}}}\frac{d w}{2{\textbf{i}}\pi }\int _{\widetilde{{\mathcal {D}}}}\frac{d z}{2{\textbf{i}}\pi } \frac{1}{ z- w} \frac{e^{\frac{ z^3}{3}-x z}}{e^{\frac{w^3}{3}-y w}}. \end{aligned}$$

Using Lemma 4.6, this explains why we expect that

$$\begin{aligned} \lim _{t \rightarrow \infty } {\mathbb {P}}\left( \frac{\log \mathsf P_{0,2t}(x_{\theta } t, 1)-a_{\theta } t}{b_{\theta } t^{1/3}}\leqslant y \right) =F_\textrm{GUE}( y). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barraquand, G., Rychnovsky, M. Random Walk on Nonnegative Integers in Beta Distributed Random Environment. Commun. Math. Phys. 398, 823–875 (2023). https://doi.org/10.1007/s00220-022-04536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04536-1

Navigation